ComfyUI/nodes.py

2182 lines
84 KiB
Python
Raw Normal View History

2023-01-03 06:53:32 +00:00
import torch
import os
import sys
import json
import hashlib
import traceback
import math
import time
import random
2024-03-11 04:56:41 +00:00
import logging
2023-01-03 06:53:32 +00:00
2024-05-07 09:41:06 +00:00
from PIL import Image, ImageOps, ImageSequence, ImageFile
2023-01-03 06:53:32 +00:00
from PIL.PngImagePlugin import PngInfo
2023-01-03 06:53:32 +00:00
import numpy as np
2023-05-18 03:04:40 +00:00
import safetensors.torch
2023-01-03 06:53:32 +00:00
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
import comfy.diffusers_load
2023-01-03 06:53:32 +00:00
import comfy.samplers
import comfy.sample
2023-01-03 06:53:32 +00:00
import comfy.sd
2023-02-16 15:38:08 +00:00
import comfy.utils
import comfy.controlnet
2023-02-16 15:38:08 +00:00
import comfy.clip_vision
import comfy.model_management
from comfy.cli_args import args
2023-02-15 14:48:10 +00:00
import importlib
2023-01-03 06:53:32 +00:00
import folder_paths
import latent_preview
2024-04-07 18:27:40 +00:00
import node_helpers
2023-06-05 23:39:56 +00:00
def before_node_execution():
comfy.model_management.throw_exception_if_processing_interrupted()
def interrupt_processing(value=True):
comfy.model_management.interrupt_current_processing(value)
2024-03-26 08:00:53 +00:00
MAX_RESOLUTION=16384
2023-01-03 06:53:32 +00:00
class CLIPTextEncode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"text": ("STRING", {"multiline": True, "dynamicPrompts": True, "tooltip": "The text to be encoded."}),
"clip": ("CLIP", {"tooltip": "The CLIP model used for encoding the text."})
}
}
2023-01-03 06:53:32 +00:00
RETURN_TYPES = ("CONDITIONING",)
OUTPUT_TOOLTIPS = ("A conditioning containing the embedded text used to guide the diffusion model.",)
2023-01-03 06:53:32 +00:00
FUNCTION = "encode"
2023-01-26 17:23:15 +00:00
CATEGORY = "conditioning"
DESCRIPTION = "Encodes a text prompt using a CLIP model into an embedding that can be used to guide the diffusion model towards generating specific images."
2023-01-26 17:23:15 +00:00
2023-01-03 06:53:32 +00:00
def encode(self, clip, text):
tokens = clip.tokenize(text)
output = clip.encode_from_tokens(tokens, return_pooled=True, return_dict=True)
cond = output.pop("cond")
return ([[cond, output]], )
class ConditioningCombine:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "combine"
2023-01-26 17:23:15 +00:00
CATEGORY = "conditioning"
def combine(self, conditioning_1, conditioning_2):
return (conditioning_1 + conditioning_2, )
class ConditioningAverage :
@classmethod
def INPUT_TYPES(s):
2023-04-30 21:28:55 +00:00
return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
"conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "addWeighted"
CATEGORY = "conditioning"
2023-04-30 21:28:55 +00:00
def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
out = []
2023-04-30 21:28:55 +00:00
if len(conditioning_from) > 1:
2024-03-11 04:56:41 +00:00
logging.warning("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
2023-04-30 21:28:55 +00:00
cond_from = conditioning_from[0][0]
pooled_output_from = conditioning_from[0][1].get("pooled_output", None)
2023-04-30 21:28:55 +00:00
for i in range(len(conditioning_to)):
t1 = conditioning_to[i][0]
pooled_output_to = conditioning_to[i][1].get("pooled_output", pooled_output_from)
2023-04-30 21:28:55 +00:00
t0 = cond_from[:,:t1.shape[1]]
if t0.shape[1] < t1.shape[1]:
t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)
tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
t_to = conditioning_to[i][1].copy()
if pooled_output_from is not None and pooled_output_to is not None:
t_to["pooled_output"] = torch.mul(pooled_output_to, conditioning_to_strength) + torch.mul(pooled_output_from, (1.0 - conditioning_to_strength))
elif pooled_output_from is not None:
t_to["pooled_output"] = pooled_output_from
n = [tw, t_to]
out.append(n)
return (out, )
2023-07-05 21:40:22 +00:00
class ConditioningConcat:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"conditioning_to": ("CONDITIONING",),
"conditioning_from": ("CONDITIONING",),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "concat"
CATEGORY = "conditioning"
2023-07-05 21:40:22 +00:00
def concat(self, conditioning_to, conditioning_from):
out = []
if len(conditioning_from) > 1:
2024-03-11 04:56:41 +00:00
logging.warning("Warning: ConditioningConcat conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
2023-07-05 21:40:22 +00:00
cond_from = conditioning_from[0][0]
for i in range(len(conditioning_to)):
t1 = conditioning_to[i][0]
tw = torch.cat((t1, cond_from),1)
n = [tw, conditioning_to[i][1].copy()]
out.append(n)
return (out, )
class ConditioningSetArea:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
2023-05-02 18:16:27 +00:00
"width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "append"
2023-01-26 17:23:15 +00:00
CATEGORY = "conditioning"
def append(self, conditioning, width, height, x, y, strength):
2024-04-07 18:27:40 +00:00
c = node_helpers.conditioning_set_values(conditioning, {"area": (height // 8, width // 8, y // 8, x // 8),
"strength": strength,
"set_area_to_bounds": False})
return (c, )
2023-01-03 06:53:32 +00:00
class ConditioningSetAreaPercentage:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"width": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
"height": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
"x": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
"y": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "append"
CATEGORY = "conditioning"
def append(self, conditioning, width, height, x, y, strength):
2024-04-07 18:27:40 +00:00
c = node_helpers.conditioning_set_values(conditioning, {"area": ("percentage", height, width, y, x),
"strength": strength,
"set_area_to_bounds": False})
return (c, )
class ConditioningSetAreaStrength:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "append"
CATEGORY = "conditioning"
def append(self, conditioning, strength):
2024-04-07 18:27:40 +00:00
c = node_helpers.conditioning_set_values(conditioning, {"strength": strength})
return (c, )
class ConditioningSetMask:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"mask": ("MASK", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"set_cond_area": (["default", "mask bounds"],),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "append"
CATEGORY = "conditioning"
def append(self, conditioning, mask, set_cond_area, strength):
set_area_to_bounds = False
if set_cond_area != "default":
set_area_to_bounds = True
if len(mask.shape) < 3:
mask = mask.unsqueeze(0)
2024-04-07 18:27:40 +00:00
c = node_helpers.conditioning_set_values(conditioning, {"mask": mask,
"set_area_to_bounds": set_area_to_bounds,
"mask_strength": strength})
return (c, )
class ConditioningZeroOut:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", )}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "zero_out"
CATEGORY = "advanced/conditioning"
def zero_out(self, conditioning):
c = []
for t in conditioning:
d = t[1].copy()
pooled_output = d.get("pooled_output", None)
if pooled_output is not None:
d["pooled_output"] = torch.zeros_like(pooled_output)
n = [torch.zeros_like(t[0]), d]
c.append(n)
return (c, )
class ConditioningSetTimestepRange:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "set_range"
CATEGORY = "advanced/conditioning"
def set_range(self, conditioning, start, end):
2024-04-07 18:40:43 +00:00
c = node_helpers.conditioning_set_values(conditioning, {"start_percent": start,
"end_percent": end})
return (c, )
2023-01-03 06:53:32 +00:00
class VAEDecode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"samples": ("LATENT", {"tooltip": "The latent to be decoded."}),
"vae": ("VAE", {"tooltip": "The VAE model used for decoding the latent."})
}
}
2023-01-03 06:53:32 +00:00
RETURN_TYPES = ("IMAGE",)
OUTPUT_TOOLTIPS = ("The decoded image.",)
2023-01-03 06:53:32 +00:00
FUNCTION = "decode"
2023-01-26 17:23:15 +00:00
CATEGORY = "latent"
DESCRIPTION = "Decodes latent images back into pixel space images."
2023-01-26 17:23:15 +00:00
2023-01-03 06:53:32 +00:00
def decode(self, vae, samples):
images = vae.decode(samples["samples"])
if len(images.shape) == 5: #Combine batches
images = images.reshape(-1, images.shape[-3], images.shape[-2], images.shape[-1])
return (images, )
2023-01-03 06:53:32 +00:00
class VAEDecodeTiled:
@classmethod
def INPUT_TYPES(s):
return {"required": {"samples": ("LATENT", ), "vae": ("VAE", ),
"tile_size": ("INT", {"default": 512, "min": 128, "max": 4096, "step": 32}),
"overlap": ("INT", {"default": 64, "min": 0, "max": 4096, "step": 32}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "decode"
CATEGORY = "_for_testing"
2024-11-11 03:41:00 +00:00
def decode(self, vae, samples, tile_size, overlap=64):
if tile_size < overlap * 4:
overlap = tile_size // 4
compression = vae.spacial_compression_decode()
images = vae.decode_tiled(samples["samples"], tile_x=tile_size // compression, tile_y=tile_size // compression, overlap=overlap // compression)
if len(images.shape) == 5: #Combine batches
images = images.reshape(-1, images.shape[-3], images.shape[-2], images.shape[-1])
return (images, )
2023-01-03 06:53:32 +00:00
class VAEEncode:
@classmethod
def INPUT_TYPES(s):
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "encode"
2023-01-26 17:23:15 +00:00
CATEGORY = "latent"
2023-05-02 18:16:27 +00:00
def encode(self, vae, pixels):
t = vae.encode(pixels[:,:,:,:3])
return ({"samples":t}, )
2023-01-03 06:53:32 +00:00
2023-03-11 20:28:15 +00:00
class VAEEncodeTiled:
@classmethod
def INPUT_TYPES(s):
return {"required": {"pixels": ("IMAGE", ), "vae": ("VAE", ),
"tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
}}
2023-03-11 20:28:15 +00:00
RETURN_TYPES = ("LATENT",)
FUNCTION = "encode"
CATEGORY = "_for_testing"
def encode(self, vae, pixels, tile_size):
t = vae.encode_tiled(pixels[:,:,:,:3], tile_x=tile_size, tile_y=tile_size, )
2023-03-11 20:28:15 +00:00
return ({"samples":t}, )
2023-05-02 18:16:27 +00:00
class VAEEncodeForInpaint:
@classmethod
def INPUT_TYPES(s):
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "encode"
CATEGORY = "latent/inpaint"
def encode(self, vae, pixels, mask, grow_mask_by=6):
x = (pixels.shape[1] // vae.downscale_ratio) * vae.downscale_ratio
y = (pixels.shape[2] // vae.downscale_ratio) * vae.downscale_ratio
2023-04-25 05:12:40 +00:00
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
2023-02-27 17:02:23 +00:00
pixels = pixels.clone()
if pixels.shape[1] != x or pixels.shape[2] != y:
x_offset = (pixels.shape[1] % vae.downscale_ratio) // 2
y_offset = (pixels.shape[2] % vae.downscale_ratio) // 2
2023-05-02 18:16:27 +00:00
pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
2023-02-27 17:02:23 +00:00
#grow mask by a few pixels to keep things seamless in latent space
if grow_mask_by == 0:
mask_erosion = mask
else:
kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
padding = math.ceil((grow_mask_by - 1) / 2)
mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)
m = (1.0 - mask.round()).squeeze(1)
for i in range(3):
pixels[:,:,:,i] -= 0.5
2023-02-27 17:02:23 +00:00
pixels[:,:,:,i] *= m
pixels[:,:,:,i] += 0.5
t = vae.encode(pixels)
2023-04-25 05:12:40 +00:00
return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
2023-01-03 06:53:32 +00:00
class InpaintModelConditioning:
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"vae": ("VAE", ),
"pixels": ("IMAGE", ),
"mask": ("MASK", ),
2024-11-19 20:31:09 +00:00
"noise_mask": ("BOOLEAN", {"default": True, "tooltip": "Add a noise mask to the latent so sampling will only happen within the mask. Might improve results or completely break things depending on the model."}),
}}
RETURN_TYPES = ("CONDITIONING","CONDITIONING","LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
CATEGORY = "conditioning/inpaint"
def encode(self, positive, negative, pixels, vae, mask, noise_mask=True):
x = (pixels.shape[1] // 8) * 8
y = (pixels.shape[2] // 8) * 8
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
orig_pixels = pixels
pixels = orig_pixels.clone()
if pixels.shape[1] != x or pixels.shape[2] != y:
x_offset = (pixels.shape[1] % 8) // 2
y_offset = (pixels.shape[2] % 8) // 2
pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
m = (1.0 - mask.round()).squeeze(1)
for i in range(3):
pixels[:,:,:,i] -= 0.5
pixels[:,:,:,i] *= m
pixels[:,:,:,i] += 0.5
concat_latent = vae.encode(pixels)
orig_latent = vae.encode(orig_pixels)
out_latent = {}
out_latent["samples"] = orig_latent
2024-11-19 20:31:09 +00:00
if noise_mask:
out_latent["noise_mask"] = mask
out = []
for conditioning in [positive, negative]:
2024-04-07 18:40:43 +00:00
c = node_helpers.conditioning_set_values(conditioning, {"concat_latent_image": concat_latent,
"concat_mask": mask})
out.append(c)
return (out[0], out[1], out_latent)
class SaveLatent:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT", ),
"filename_prefix": ("STRING", {"default": "latents/ComfyUI"})},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ()
FUNCTION = "save"
OUTPUT_NODE = True
CATEGORY = "_for_testing"
def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
# support save metadata for latent sharing
prompt_info = ""
if prompt is not None:
prompt_info = json.dumps(prompt)
metadata = None
if not args.disable_metadata:
metadata = {"prompt": prompt_info}
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata[x] = json.dumps(extra_pnginfo[x])
file = f"{filename}_{counter:05}_.latent"
results = list()
results.append({
"filename": file,
"subfolder": subfolder,
"type": "output"
})
file = os.path.join(full_output_folder, file)
2023-05-18 03:04:40 +00:00
output = {}
output["latent_tensor"] = samples["samples"]
output["latent_format_version_0"] = torch.tensor([])
2023-05-18 03:04:40 +00:00
comfy.utils.save_torch_file(output, file, metadata=metadata)
return { "ui": { "latents": results } }
class LoadLatent:
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
return {"required": {"latent": [sorted(files), ]}, }
CATEGORY = "_for_testing"
RETURN_TYPES = ("LATENT", )
FUNCTION = "load"
def load(self, latent):
latent_path = folder_paths.get_annotated_filepath(latent)
latent = safetensors.torch.load_file(latent_path, device="cpu")
multiplier = 1.0
if "latent_format_version_0" not in latent:
multiplier = 1.0 / 0.18215
samples = {"samples": latent["latent_tensor"].float() * multiplier}
2023-05-18 03:04:40 +00:00
return (samples, )
@classmethod
def IS_CHANGED(s, latent):
image_path = folder_paths.get_annotated_filepath(latent)
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()
@classmethod
def VALIDATE_INPUTS(s, latent):
if not folder_paths.exists_annotated_filepath(latent):
return "Invalid latent file: {}".format(latent)
return True
2023-01-03 06:53:32 +00:00
class CheckpointLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
"ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
2023-01-03 06:53:32 +00:00
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
FUNCTION = "load_checkpoint"
2023-04-05 02:48:11 +00:00
CATEGORY = "advanced/loaders"
2024-09-13 00:27:07 +00:00
DEPRECATED = True
2023-01-26 17:23:15 +00:00
2024-06-06 18:49:45 +00:00
def load_checkpoint(self, config_name, ckpt_name):
config_path = folder_paths.get_full_path("configs", config_name)
ckpt_path = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name)
2023-03-18 07:08:43 +00:00
return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
2023-01-03 06:53:32 +00:00
class CheckpointLoaderSimple:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"ckpt_name": (folder_paths.get_filename_list("checkpoints"), {"tooltip": "The name of the checkpoint (model) to load."}),
}
}
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
OUTPUT_TOOLTIPS = ("The model used for denoising latents.",
"The CLIP model used for encoding text prompts.",
"The VAE model used for encoding and decoding images to and from latent space.")
FUNCTION = "load_checkpoint"
CATEGORY = "loaders"
DESCRIPTION = "Loads a diffusion model checkpoint, diffusion models are used to denoise latents."
2024-06-06 18:49:45 +00:00
def load_checkpoint(self, ckpt_name):
ckpt_path = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name)
2023-03-18 07:08:43 +00:00
out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
return out[:3]
2023-04-06 06:57:31 +00:00
class DiffusersLoader:
@classmethod
def INPUT_TYPES(cls):
paths = []
2023-04-07 05:02:26 +00:00
for search_path in folder_paths.get_folder_paths("diffusers"):
2023-04-07 04:48:58 +00:00
if os.path.exists(search_path):
for root, subdir, files in os.walk(search_path, followlinks=True):
if "model_index.json" in files:
paths.append(os.path.relpath(root, start=search_path))
return {"required": {"model_path": (paths,), }}
2023-04-06 06:57:31 +00:00
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
FUNCTION = "load_checkpoint"
CATEGORY = "advanced/loaders/deprecated"
2023-04-06 06:57:31 +00:00
def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
2023-04-07 05:02:26 +00:00
for search_path in folder_paths.get_folder_paths("diffusers"):
if os.path.exists(search_path):
path = os.path.join(search_path, model_path)
if os.path.exists(path):
model_path = path
2023-04-07 05:02:26 +00:00
break
2023-08-30 16:55:07 +00:00
return comfy.diffusers_load.load_diffusers(model_path, output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
2023-04-06 06:57:31 +00:00
class unCLIPCheckpointLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
}}
RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
FUNCTION = "load_checkpoint"
2023-04-05 02:48:11 +00:00
CATEGORY = "loaders"
def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
ckpt_path = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name)
out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
return out
class CLIPSetLastLayer:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip": ("CLIP", ),
"stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "set_last_layer"
CATEGORY = "conditioning"
def set_last_layer(self, clip, stop_at_clip_layer):
clip = clip.clone()
clip.clip_layer(stop_at_clip_layer)
return (clip,)
class LoraLoader:
def __init__(self):
self.loaded_lora = None
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", {"tooltip": "The diffusion model the LoRA will be applied to."}),
"clip": ("CLIP", {"tooltip": "The CLIP model the LoRA will be applied to."}),
"lora_name": (folder_paths.get_filename_list("loras"), {"tooltip": "The name of the LoRA."}),
"strength_model": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01, "tooltip": "How strongly to modify the diffusion model. This value can be negative."}),
"strength_clip": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01, "tooltip": "How strongly to modify the CLIP model. This value can be negative."}),
}
}
RETURN_TYPES = ("MODEL", "CLIP")
OUTPUT_TOOLTIPS = ("The modified diffusion model.", "The modified CLIP model.")
FUNCTION = "load_lora"
CATEGORY = "loaders"
DESCRIPTION = "LoRAs are used to modify diffusion and CLIP models, altering the way in which latents are denoised such as applying styles. Multiple LoRA nodes can be linked together."
def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
if strength_model == 0 and strength_clip == 0:
return (model, clip)
lora_path = folder_paths.get_full_path_or_raise("loras", lora_name)
lora = None
if self.loaded_lora is not None:
if self.loaded_lora[0] == lora_path:
lora = self.loaded_lora[1]
else:
temp = self.loaded_lora
self.loaded_lora = None
del temp
if lora is None:
lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
self.loaded_lora = (lora_path, lora)
model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
return (model_lora, clip_lora)
class LoraLoaderModelOnly(LoraLoader):
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"lora_name": (folder_paths.get_filename_list("loras"), ),
2024-04-23 17:07:39 +00:00
"strength_model": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "load_lora_model_only"
def load_lora_model_only(self, model, lora_name, strength_model):
return (self.load_lora(model, None, lora_name, strength_model, 0)[0],)
2023-01-03 06:53:32 +00:00
class VAELoader:
@staticmethod
def vae_list():
vaes = folder_paths.get_filename_list("vae")
approx_vaes = folder_paths.get_filename_list("vae_approx")
sdxl_taesd_enc = False
sdxl_taesd_dec = False
sd1_taesd_enc = False
sd1_taesd_dec = False
2024-06-16 06:03:53 +00:00
sd3_taesd_enc = False
sd3_taesd_dec = False
f1_taesd_enc = False
f1_taesd_dec = False
for v in approx_vaes:
if v.startswith("taesd_decoder."):
sd1_taesd_dec = True
elif v.startswith("taesd_encoder."):
sd1_taesd_enc = True
elif v.startswith("taesdxl_decoder."):
sdxl_taesd_dec = True
elif v.startswith("taesdxl_encoder."):
sdxl_taesd_enc = True
2024-06-16 06:03:53 +00:00
elif v.startswith("taesd3_decoder."):
sd3_taesd_dec = True
elif v.startswith("taesd3_encoder."):
sd3_taesd_enc = True
elif v.startswith("taef1_encoder."):
f1_taesd_dec = True
elif v.startswith("taef1_decoder."):
f1_taesd_enc = True
if sd1_taesd_dec and sd1_taesd_enc:
vaes.append("taesd")
if sdxl_taesd_dec and sdxl_taesd_enc:
vaes.append("taesdxl")
2024-06-16 06:03:53 +00:00
if sd3_taesd_dec and sd3_taesd_enc:
vaes.append("taesd3")
if f1_taesd_dec and f1_taesd_enc:
vaes.append("taef1")
return vaes
@staticmethod
def load_taesd(name):
sd = {}
approx_vaes = folder_paths.get_filename_list("vae_approx")
encoder = next(filter(lambda a: a.startswith("{}_encoder.".format(name)), approx_vaes))
decoder = next(filter(lambda a: a.startswith("{}_decoder.".format(name)), approx_vaes))
enc = comfy.utils.load_torch_file(folder_paths.get_full_path_or_raise("vae_approx", encoder))
for k in enc:
sd["taesd_encoder.{}".format(k)] = enc[k]
dec = comfy.utils.load_torch_file(folder_paths.get_full_path_or_raise("vae_approx", decoder))
for k in dec:
sd["taesd_decoder.{}".format(k)] = dec[k]
if name == "taesd":
sd["vae_scale"] = torch.tensor(0.18215)
sd["vae_shift"] = torch.tensor(0.0)
elif name == "taesdxl":
sd["vae_scale"] = torch.tensor(0.13025)
sd["vae_shift"] = torch.tensor(0.0)
2024-06-16 06:03:53 +00:00
elif name == "taesd3":
sd["vae_scale"] = torch.tensor(1.5305)
sd["vae_shift"] = torch.tensor(0.0609)
elif name == "taef1":
sd["vae_scale"] = torch.tensor(0.3611)
sd["vae_shift"] = torch.tensor(0.1159)
return sd
2023-01-03 06:53:32 +00:00
@classmethod
def INPUT_TYPES(s):
return {"required": { "vae_name": (s.vae_list(), )}}
2023-01-03 06:53:32 +00:00
RETURN_TYPES = ("VAE",)
FUNCTION = "load_vae"
2023-01-26 17:23:15 +00:00
CATEGORY = "loaders"
2023-01-03 06:53:32 +00:00
#TODO: scale factor?
def load_vae(self, vae_name):
if vae_name in ["taesd", "taesdxl", "taesd3", "taef1"]:
sd = self.load_taesd(vae_name)
else:
vae_path = folder_paths.get_full_path_or_raise("vae", vae_name)
sd = comfy.utils.load_torch_file(vae_path)
vae = comfy.sd.VAE(sd=sd)
2023-01-03 06:53:32 +00:00
return (vae,)
2023-02-16 15:38:08 +00:00
class ControlNetLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
2023-02-16 15:38:08 +00:00
RETURN_TYPES = ("CONTROL_NET",)
FUNCTION = "load_controlnet"
CATEGORY = "loaders"
def load_controlnet(self, control_net_name):
controlnet_path = folder_paths.get_full_path_or_raise("controlnet", control_net_name)
controlnet = comfy.controlnet.load_controlnet(controlnet_path)
2023-02-16 15:38:08 +00:00
return (controlnet,)
2023-02-23 04:22:03 +00:00
class DiffControlNetLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
2023-02-23 04:22:03 +00:00
RETURN_TYPES = ("CONTROL_NET",)
FUNCTION = "load_controlnet"
CATEGORY = "loaders"
def load_controlnet(self, model, control_net_name):
controlnet_path = folder_paths.get_full_path_or_raise("controlnet", control_net_name)
controlnet = comfy.controlnet.load_controlnet(controlnet_path, model)
2023-02-23 04:22:03 +00:00
return (controlnet,)
2023-02-16 15:38:08 +00:00
class ControlNetApply:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"control_net": ("CONTROL_NET", ),
"image": ("IMAGE", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
}}
2023-02-16 15:38:08 +00:00
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "apply_controlnet"
DEPRECATED = True
CATEGORY = "conditioning/controlnet"
2023-02-16 15:38:08 +00:00
def apply_controlnet(self, conditioning, control_net, image, strength):
if strength == 0:
return (conditioning, )
2023-02-16 15:38:08 +00:00
c = []
control_hint = image.movedim(-1,1)
for t in conditioning:
n = [t[0], t[1].copy()]
c_net = control_net.copy().set_cond_hint(control_hint, strength)
if 'control' in t[1]:
c_net.set_previous_controlnet(t[1]['control'])
n[1]['control'] = c_net
n[1]['control_apply_to_uncond'] = True
2023-02-16 15:38:08 +00:00
c.append(n)
return (c, )
class ControlNetApplyAdvanced:
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"control_net": ("CONTROL_NET", ),
"image": ("IMAGE", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
},
"optional": {"vae": ("VAE", ),
}
}
RETURN_TYPES = ("CONDITIONING","CONDITIONING")
RETURN_NAMES = ("positive", "negative")
FUNCTION = "apply_controlnet"
CATEGORY = "conditioning/controlnet"
def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent, vae=None, extra_concat=[]):
if strength == 0:
return (positive, negative)
control_hint = image.movedim(-1,1)
cnets = {}
out = []
for conditioning in [positive, negative]:
c = []
for t in conditioning:
d = t[1].copy()
prev_cnet = d.get('control', None)
if prev_cnet in cnets:
c_net = cnets[prev_cnet]
else:
c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent), vae=vae, extra_concat=extra_concat)
c_net.set_previous_controlnet(prev_cnet)
cnets[prev_cnet] = c_net
d['control'] = c_net
d['control_apply_to_uncond'] = False
n = [t[0], d]
c.append(n)
out.append(c)
return (out[0], out[1])
class UNETLoader:
@classmethod
def INPUT_TYPES(s):
2024-08-18 01:28:36 +00:00
return {"required": { "unet_name": (folder_paths.get_filename_list("diffusion_models"), ),
"weight_dtype": (["default", "fp8_e4m3fn", "fp8_e4m3fn_fast", "fp8_e5m2"],)
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "load_unet"
CATEGORY = "advanced/loaders"
def load_unet(self, unet_name, weight_dtype):
model_options = {}
2024-08-02 02:19:53 +00:00
if weight_dtype == "fp8_e4m3fn":
model_options["dtype"] = torch.float8_e4m3fn
elif weight_dtype == "fp8_e4m3fn_fast":
model_options["dtype"] = torch.float8_e4m3fn
model_options["fp8_optimizations"] = True
2024-08-02 02:19:53 +00:00
elif weight_dtype == "fp8_e5m2":
model_options["dtype"] = torch.float8_e5m2
2024-08-02 02:19:53 +00:00
unet_path = folder_paths.get_full_path_or_raise("diffusion_models", unet_name)
model = comfy.sd.load_diffusion_model(unet_path, model_options=model_options)
return (model,)
class CLIPLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_name": (folder_paths.get_filename_list("text_encoders"), ),
2024-11-22 13:44:42 +00:00
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv"], ),
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "load_clip"
CATEGORY = "advanced/loaders"
DESCRIPTION = "[Recipes]\n\nstable_diffusion: clip-l\nstable_cascade: clip-g\nsd3: t5 / clip-g / clip-l\nstable_audio: t5\nmochi: t5"
2024-02-16 18:29:04 +00:00
def load_clip(self, clip_name, type="stable_diffusion"):
if type == "stable_cascade":
clip_type = comfy.sd.CLIPType.STABLE_CASCADE
elif type == "sd3":
clip_type = comfy.sd.CLIPType.SD3
elif type == "stable_audio":
clip_type = comfy.sd.CLIPType.STABLE_AUDIO
elif type == "mochi":
clip_type = comfy.sd.CLIPType.MOCHI
2024-11-22 13:44:42 +00:00
elif type == "ltxv":
clip_type = comfy.sd.CLIPType.LTXV
else:
clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
2024-02-16 18:29:04 +00:00
clip_path = folder_paths.get_full_path_or_raise("text_encoders", clip_name)
2024-02-16 18:29:04 +00:00
clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type)
return (clip,)
class DualCLIPLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ),
"clip_name2": (folder_paths.get_filename_list("text_encoders"), ),
"type": (["sdxl", "sd3", "flux"], ),
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "load_clip"
CATEGORY = "advanced/loaders"
DESCRIPTION = "[Recipes]\n\nsdxl: clip-l, clip-g\nsd3: clip-l, clip-g / clip-l, t5 / clip-g, t5\nflux: clip-l, t5"
def load_clip(self, clip_name1, clip_name2, type):
clip_path1 = folder_paths.get_full_path_or_raise("text_encoders", clip_name1)
clip_path2 = folder_paths.get_full_path_or_raise("text_encoders", clip_name2)
if type == "sdxl":
clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
elif type == "sd3":
clip_type = comfy.sd.CLIPType.SD3
elif type == "flux":
clip_type = comfy.sd.CLIPType.FLUX
clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type)
return (clip,)
class CLIPVisionLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
}}
RETURN_TYPES = ("CLIP_VISION",)
FUNCTION = "load_clip"
CATEGORY = "loaders"
def load_clip(self, clip_name):
clip_path = folder_paths.get_full_path_or_raise("clip_vision", clip_name)
clip_vision = comfy.clip_vision.load(clip_path)
return (clip_vision,)
class CLIPVisionEncode:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_vision": ("CLIP_VISION",),
"image": ("IMAGE",),
"crop": (["center", "none"],)
}}
2023-03-06 06:30:17 +00:00
RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
FUNCTION = "encode"
CATEGORY = "conditioning"
def encode(self, clip_vision, image, crop):
crop_image = True
if crop != "center":
crop_image = False
output = clip_vision.encode_image(image, crop=crop_image)
return (output,)
class StyleModelLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
RETURN_TYPES = ("STYLE_MODEL",)
FUNCTION = "load_style_model"
CATEGORY = "loaders"
def load_style_model(self, style_model_name):
style_model_path = folder_paths.get_full_path_or_raise("style_models", style_model_name)
style_model = comfy.sd.load_style_model(style_model_path)
return (style_model,)
class StyleModelApply:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"style_model": ("STYLE_MODEL", ),
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}),
"strength_type": (["multiply"], ),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "apply_stylemodel"
2023-03-06 06:30:17 +00:00
CATEGORY = "conditioning/style_model"
def apply_stylemodel(self, clip_vision_output, style_model, conditioning, strength, strength_type):
cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
if strength_type == "multiply":
cond *= strength
c = []
for t in conditioning:
n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
c.append(n)
return (c, )
class unCLIPConditioning:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "apply_adm"
2023-04-05 02:48:11 +00:00
CATEGORY = "conditioning"
def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
if strength == 0:
return (conditioning, )
c = []
for t in conditioning:
o = t[1].copy()
x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
if "unclip_conditioning" in o:
o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
else:
o["unclip_conditioning"] = [x]
n = [t[0], o]
c.append(n)
return (c, )
2023-04-19 13:36:19 +00:00
class GLIGENLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}
RETURN_TYPES = ("GLIGEN",)
FUNCTION = "load_gligen"
2023-04-20 21:30:10 +00:00
CATEGORY = "loaders"
2023-04-19 13:36:19 +00:00
def load_gligen(self, gligen_name):
gligen_path = folder_paths.get_full_path_or_raise("gligen", gligen_name)
2023-04-19 13:36:19 +00:00
gligen = comfy.sd.load_gligen(gligen_path)
return (gligen,)
class GLIGENTextBoxApply:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning_to": ("CONDITIONING", ),
"clip": ("CLIP", ),
"gligen_textbox_model": ("GLIGEN", ),
"text": ("STRING", {"multiline": True, "dynamicPrompts": True}),
2023-04-19 13:36:19 +00:00
"width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "append"
2023-04-20 21:30:10 +00:00
CATEGORY = "conditioning/gligen"
2023-04-19 13:36:19 +00:00
def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
c = []
cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled="unprojected")
2023-04-19 13:36:19 +00:00
for t in conditioning_to:
n = [t[0], t[1].copy()]
position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
prev = []
if "gligen" in n[1]:
prev = n[1]['gligen'][2]
n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
c.append(n)
return (c, )
2023-01-03 06:53:32 +00:00
class EmptyLatentImage:
def __init__(self):
self.device = comfy.model_management.intermediate_device()
2023-01-03 06:53:32 +00:00
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"width": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8, "tooltip": "The width of the latent images in pixels."}),
"height": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8, "tooltip": "The height of the latent images in pixels."}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."})
}
}
2023-01-03 06:53:32 +00:00
RETURN_TYPES = ("LATENT",)
OUTPUT_TOOLTIPS = ("The empty latent image batch.",)
2023-01-03 06:53:32 +00:00
FUNCTION = "generate"
2023-01-26 17:23:15 +00:00
CATEGORY = "latent"
DESCRIPTION = "Create a new batch of empty latent images to be denoised via sampling."
2023-01-26 17:23:15 +00:00
2023-01-03 06:53:32 +00:00
def generate(self, width, height, batch_size=1):
latent = torch.zeros([batch_size, 4, height // 8, width // 8], device=self.device)
return ({"samples":latent}, )
2023-01-03 06:53:32 +00:00
2023-02-16 15:38:08 +00:00
class LatentFromBatch:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
"length": ("INT", {"default": 1, "min": 1, "max": 64}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "frombatch"
CATEGORY = "latent/batch"
def frombatch(self, samples, batch_index, length):
s = samples.copy()
s_in = samples["samples"]
batch_index = min(s_in.shape[0] - 1, batch_index)
length = min(s_in.shape[0] - batch_index, length)
s["samples"] = s_in[batch_index:batch_index + length].clone()
if "noise_mask" in samples:
masks = samples["noise_mask"]
if masks.shape[0] == 1:
s["noise_mask"] = masks.clone()
else:
if masks.shape[0] < s_in.shape[0]:
masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
s["noise_mask"] = masks[batch_index:batch_index + length].clone()
if "batch_index" not in s:
s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
else:
s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
return (s,)
class RepeatLatentBatch:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"amount": ("INT", {"default": 1, "min": 1, "max": 64}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "repeat"
CATEGORY = "latent/batch"
def repeat(self, samples, amount):
s = samples.copy()
s_in = samples["samples"]
s["samples"] = s_in.repeat((amount, 1,1,1))
if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
masks = samples["noise_mask"]
if masks.shape[0] < s_in.shape[0]:
masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
if "batch_index" in s:
offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
return (s,)
2023-01-03 06:53:32 +00:00
class LatentUpscale:
2023-06-17 05:54:33 +00:00
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
crop_methods = ["disabled", "center"]
2023-01-03 06:53:32 +00:00
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
2023-09-24 15:08:54 +00:00
"width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"crop": (s.crop_methods,)}}
2023-01-03 06:53:32 +00:00
RETURN_TYPES = ("LATENT",)
FUNCTION = "upscale"
CATEGORY = "latent"
def upscale(self, samples, upscale_method, width, height, crop):
2023-09-24 15:08:54 +00:00
if width == 0 and height == 0:
s = samples
else:
s = samples.copy()
if width == 0:
height = max(64, height)
width = max(64, round(samples["samples"].shape[-1] * height / samples["samples"].shape[-2]))
2023-09-24 15:08:54 +00:00
elif height == 0:
width = max(64, width)
height = max(64, round(samples["samples"].shape[-2] * width / samples["samples"].shape[-1]))
2023-09-24 15:08:54 +00:00
else:
width = max(64, width)
height = max(64, height)
s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
2023-01-03 06:53:32 +00:00
return (s,)
2023-05-23 16:53:38 +00:00
class LatentUpscaleBy:
2023-06-17 05:54:33 +00:00
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
2023-05-23 16:53:38 +00:00
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
"scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "upscale"
CATEGORY = "latent"
def upscale(self, samples, upscale_method, scale_by):
s = samples.copy()
width = round(samples["samples"].shape[-1] * scale_by)
height = round(samples["samples"].shape[-2] * scale_by)
2023-05-23 16:53:38 +00:00
s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
return (s,)
2023-01-31 07:28:07 +00:00
class LatentRotate:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "rotate"
2023-03-06 06:30:17 +00:00
CATEGORY = "latent/transform"
2023-01-31 07:28:07 +00:00
def rotate(self, samples, rotation):
s = samples.copy()
2023-01-31 07:28:07 +00:00
rotate_by = 0
if rotation.startswith("90"):
rotate_by = 1
elif rotation.startswith("180"):
rotate_by = 2
elif rotation.startswith("270"):
rotate_by = 3
s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
2023-01-31 07:28:07 +00:00
return (s,)
2023-01-31 08:28:38 +00:00
class LatentFlip:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "flip"
2023-03-06 06:30:17 +00:00
CATEGORY = "latent/transform"
2023-01-31 08:28:38 +00:00
def flip(self, samples, flip_method):
s = samples.copy()
2023-01-31 08:28:38 +00:00
if flip_method.startswith("x"):
s["samples"] = torch.flip(samples["samples"], dims=[2])
2023-01-31 08:28:38 +00:00
elif flip_method.startswith("y"):
s["samples"] = torch.flip(samples["samples"], dims=[3])
2023-01-31 08:28:38 +00:00
return (s,)
class LatentComposite:
@classmethod
def INPUT_TYPES(s):
2023-04-14 04:14:35 +00:00
return {"required": { "samples_to": ("LATENT",),
"samples_from": ("LATENT",),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "composite"
CATEGORY = "latent"
2023-04-14 04:14:35 +00:00
def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
x = x // 8
y = y // 8
feather = feather // 8
2023-04-14 04:14:35 +00:00
samples_out = samples_to.copy()
s = samples_to["samples"].clone()
samples_to = samples_to["samples"]
samples_from = samples_from["samples"]
if feather == 0:
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
else:
samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
mask = torch.ones_like(samples_from)
for t in range(feather):
if y != 0:
mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))
if y + samples_from.shape[2] < samples_to.shape[2]:
mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
if x != 0:
mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
if x + samples_from.shape[3] < samples_to.shape[3]:
mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
rev_mask = torch.ones_like(mask) - mask
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
samples_out["samples"] = s
return (samples_out,)
class LatentBlend:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"samples1": ("LATENT",),
"samples2": ("LATENT",),
"blend_factor": ("FLOAT", {
"default": 0.5,
"min": 0,
"max": 1,
"step": 0.01
}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "blend"
CATEGORY = "_for_testing"
def blend(self, samples1, samples2, blend_factor:float, blend_mode: str="normal"):
samples_out = samples1.copy()
samples1 = samples1["samples"]
samples2 = samples2["samples"]
if samples1.shape != samples2.shape:
samples2.permute(0, 3, 1, 2)
samples2 = comfy.utils.common_upscale(samples2, samples1.shape[3], samples1.shape[2], 'bicubic', crop='center')
samples2.permute(0, 2, 3, 1)
samples_blended = self.blend_mode(samples1, samples2, blend_mode)
samples_blended = samples1 * blend_factor + samples_blended * (1 - blend_factor)
samples_out["samples"] = samples_blended
return (samples_out,)
def blend_mode(self, img1, img2, mode):
if mode == "normal":
return img2
else:
raise ValueError(f"Unsupported blend mode: {mode}")
2023-02-04 20:21:46 +00:00
class LatentCrop:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
2023-05-02 18:16:27 +00:00
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
2023-02-04 20:21:46 +00:00
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "crop"
2023-03-06 06:30:17 +00:00
CATEGORY = "latent/transform"
2023-02-04 20:21:46 +00:00
def crop(self, samples, width, height, x, y):
s = samples.copy()
samples = samples['samples']
2023-02-04 20:21:46 +00:00
x = x // 8
y = y // 8
#enfonce minimum size of 64
if x > (samples.shape[3] - 8):
x = samples.shape[3] - 8
if y > (samples.shape[2] - 8):
y = samples.shape[2] - 8
new_height = height // 8
new_width = width // 8
to_x = new_width + x
to_y = new_height + y
s['samples'] = samples[:,:,y:to_y, x:to_x]
2023-02-04 20:21:46 +00:00
return (s,)
class SetLatentNoiseMask:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"mask": ("MASK",),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "set_mask"
CATEGORY = "latent/inpaint"
def set_mask(self, samples, mask):
s = samples.copy()
s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
return (s,)
2023-06-05 18:19:02 +00:00
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
latent_image = latent["samples"]
latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image)
if disable_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
else:
batch_inds = latent["batch_index"] if "batch_index" in latent else None
noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
2023-04-24 10:53:10 +00:00
noise_mask = None
if "noise_mask" in latent:
2023-04-25 03:25:51 +00:00
noise_mask = latent["noise_mask"]
2023-09-27 20:45:22 +00:00
callback = latent_preview.prepare_callback(model, steps)
disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
2023-04-25 03:25:51 +00:00
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
out = latent.copy()
out["samples"] = samples
return (out, )
2023-01-03 06:53:32 +00:00
class KSampler:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", {"tooltip": "The model used for denoising the input latent."}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "tooltip": "The random seed used for creating the noise."}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000, "tooltip": "The number of steps used in the denoising process."}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01, "tooltip": "The Classifier-Free Guidance scale balances creativity and adherence to the prompt. Higher values result in images more closely matching the prompt however too high values will negatively impact quality."}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, {"tooltip": "The algorithm used when sampling, this can affect the quality, speed, and style of the generated output."}),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, {"tooltip": "The scheduler controls how noise is gradually removed to form the image."}),
"positive": ("CONDITIONING", {"tooltip": "The conditioning describing the attributes you want to include in the image."}),
"negative": ("CONDITIONING", {"tooltip": "The conditioning describing the attributes you want to exclude from the image."}),
"latent_image": ("LATENT", {"tooltip": "The latent image to denoise."}),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "The amount of denoising applied, lower values will maintain the structure of the initial image allowing for image to image sampling."}),
}
}
2023-01-03 06:53:32 +00:00
RETURN_TYPES = ("LATENT",)
OUTPUT_TOOLTIPS = ("The denoised latent.",)
2023-01-03 06:53:32 +00:00
FUNCTION = "sample"
2023-01-26 17:23:15 +00:00
CATEGORY = "sampling"
DESCRIPTION = "Uses the provided model, positive and negative conditioning to denoise the latent image."
2023-01-26 17:23:15 +00:00
2023-06-05 18:19:02 +00:00
def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
2023-01-03 06:53:32 +00:00
class KSamplerAdvanced:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model": ("MODEL",),
"add_noise": (["enable", "disable"], ),
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"latent_image": ("LATENT", ),
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
"return_with_leftover_noise": (["disable", "enable"], ),
2023-06-05 18:19:02 +00:00
}
}
RETURN_TYPES = ("LATENT",)
FUNCTION = "sample"
CATEGORY = "sampling"
2023-01-03 06:53:32 +00:00
2023-06-05 18:19:02 +00:00
def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
force_full_denoise = True
if return_with_leftover_noise == "enable":
force_full_denoise = False
disable_noise = False
if add_noise == "disable":
disable_noise = True
2023-06-05 18:19:02 +00:00
return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
2023-01-03 06:53:32 +00:00
class SaveImage:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
2023-03-19 11:54:29 +00:00
self.type = "output"
self.prefix_append = ""
self.compress_level = 4
2023-01-03 06:53:32 +00:00
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE", {"tooltip": "The images to save."}),
"filename_prefix": ("STRING", {"default": "ComfyUI", "tooltip": "The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."})
},
"hidden": {
"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"
},
}
2023-01-03 06:53:32 +00:00
RETURN_TYPES = ()
FUNCTION = "save_images"
OUTPUT_NODE = True
2023-01-26 17:23:15 +00:00
CATEGORY = "image"
DESCRIPTION = "Saves the input images to your ComfyUI output directory."
2023-01-26 17:23:15 +00:00
2023-03-14 19:42:28 +00:00
def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
filename_prefix += self.prefix_append
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
2023-03-19 11:54:29 +00:00
results = list()
for (batch_number, image) in enumerate(images):
2023-01-03 06:53:32 +00:00
i = 255. * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
metadata = None
if not args.disable_metadata:
metadata = PngInfo()
if prompt is not None:
metadata.add_text("prompt", json.dumps(prompt))
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
2023-03-15 10:48:15 +00:00
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
file = f"{filename_with_batch_num}_{counter:05}_.png"
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=self.compress_level)
2023-03-19 11:54:29 +00:00
results.append({
"filename": file,
"subfolder": subfolder,
"type": self.type
2023-04-13 20:38:02 +00:00
})
2023-01-24 07:17:18 +00:00
counter += 1
2023-03-20 18:55:28 +00:00
2023-03-19 11:54:29 +00:00
return { "ui": { "images": results } }
2023-01-03 06:53:32 +00:00
2023-03-14 19:28:07 +00:00
class PreviewImage(SaveImage):
def __init__(self):
self.output_dir = folder_paths.get_temp_directory()
2023-03-19 11:54:29 +00:00
self.type = "temp"
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
self.compress_level = 1
2023-03-14 19:28:07 +00:00
@classmethod
def INPUT_TYPES(s):
return {"required":
2023-03-14 19:28:07 +00:00
{"images": ("IMAGE", ), },
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
class LoadImage:
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
return {"required":
{"image": (sorted(files), {"image_upload": True})},
}
2023-01-26 17:23:15 +00:00
CATEGORY = "image"
RETURN_TYPES = ("IMAGE", "MASK")
FUNCTION = "load_image"
def load_image(self, image):
image_path = folder_paths.get_annotated_filepath(image)
img = node_helpers.pillow(Image.open, image_path)
output_images = []
output_masks = []
w, h = None, None
excluded_formats = ['MPO']
for i in ImageSequence.Iterator(img):
i = node_helpers.pillow(ImageOps.exif_transpose, i)
2024-05-07 09:41:06 +00:00
if i.mode == 'I':
i = i.point(lambda i: i * (1 / 255))
image = i.convert("RGB")
if len(output_images) == 0:
w = image.size[0]
h = image.size[1]
if image.size[0] != w or image.size[1] != h:
continue
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
if 'A' in i.getbands():
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
else:
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
output_images.append(image)
output_masks.append(mask.unsqueeze(0))
if len(output_images) > 1 and img.format not in excluded_formats:
output_image = torch.cat(output_images, dim=0)
output_mask = torch.cat(output_masks, dim=0)
else:
output_image = output_images[0]
output_mask = output_masks[0]
return (output_image, output_mask)
@classmethod
def IS_CHANGED(s, image):
image_path = folder_paths.get_annotated_filepath(image)
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()
2023-03-09 18:18:08 +00:00
@classmethod
def VALIDATE_INPUTS(s, image):
if not folder_paths.exists_annotated_filepath(image):
return "Invalid image file: {}".format(image)
return True
class LoadImageMask:
_color_channels = ["alpha", "red", "green", "blue"]
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
return {"required":
{"image": (sorted(files), {"image_upload": True}),
Clipspace Menu and MaskEditor application. (#548) * Add clipspace feature. * feat: copy content to clipspace * feat: paste content from clipspace Extend validation to allow for validating annotated_path in addition to other parameters. Add support for annotated_filepath in folder_paths function. Generalize the '/upload/image' API to allow for uploading images to the 'input', 'temp', or 'output' directories. * rename contentClipboard -> clipspace * Do deep copy for imgs on copy to clipspace. * mask painting on clipspace * add original_imgs into clipspace * Preserve the original image when 'imgs' are modified * robust patch & refactoring folder_paths about annotated_filepath * wip * Only show the Paste menu if the ComfyApp.clipspace is not empty * clipspace feature added maskeditor feature added * instant refresh on paste force triggering 'changed' on paste action * enhance mask painting smooth drawing add brush_size +/- button * robust patch use mouseup event * robust patch again... * subfolder fix on paste logic attach subfolder if subfolder isn't empty * event listener patch add ], [ key event for brush size remove listener on close * Fix button positioning issue related to window height. Change brush size from button to slider. * clean commit * clean code * various bug fixes * paste action - prevent opening upload popup - ensure rendering after widget_value update * view api update - support annotated_filepath * maskeditor layout - prevent covering button by hidden div * remove dbg message * Add cursor functionality to display brush size * refactor: Replace brush preview feature with missionfloyd implementation * missionfloyd implementation * hiding brush preview off the canvas * change brush size on wheel event * keyup -> keydown event * Update web/extensions/core/maskeditor.js Co-authored-by: missionfloyd <missionfloyd@users.noreply.github.com> * Add support for channel-specific image data retrieval in /view API to fix alpha mask loading issue When loading an image with an alpha mask in JavaScript canvas, there is an issue where the alpha and RGB channels are premultiplied. To avoid reliance on JavaScript canvas, I added support for channel-specific image data retrieval in the "/view" API. This allows us to retrieve data for each channel separately and fix the alpha mask loading issue. The changes have been committed to the repository. * Enable brush preview for key and slider events * optimize * preview fix * robust patch * fix copy (clipspace) action imgs[0] copy -> whole imgs copy * support batch images on clipspace, maskeditor * copy/paste bug fixes for batch images enhance selector preview on clipspace menu add img_paste_mode option into clipspace menu * crash fix * print message if clipspace content cannot editable * Update web/extensions/core/maskeditor.js Co-authored-by: missionfloyd <missionfloyd@users.noreply.github.com> * make default img_paste_mode to 'selected' refactor space -> tab * save clipspace files to input/clipspace instead of temp * show "clipspace/filename.png" instead of 'filename.png [clipspace]' in LoadImage/LoadImageMask * refresh fix related to FILE_COMBO * Update web/extensions/core/maskeditor.js Co-authored-by: missionfloyd <missionfloyd@users.noreply.github.com> * Update web/extensions/core/maskeditor.js Co-authored-by: missionfloyd <missionfloyd@users.noreply.github.com> * adjust margin based on missionfloyd impelements * mouse event -> pointer event * pen, touch, mouse drawing patched and tested * Update web/extensions/core/maskeditor.js Co-authored-by: missionfloyd <missionfloyd@users.noreply.github.com> * add comment about touch event. --------- Co-authored-by: Lt.Dr.Data <lt.dr.data@gmail.com> Co-authored-by: missionfloyd <missionfloyd@users.noreply.github.com>
2023-05-08 18:37:36 +00:00
"channel": (s._color_channels, ), }
}
CATEGORY = "mask"
RETURN_TYPES = ("MASK",)
FUNCTION = "load_image"
def load_image(self, image, channel):
image_path = folder_paths.get_annotated_filepath(image)
i = node_helpers.pillow(Image.open, image_path)
i = node_helpers.pillow(ImageOps.exif_transpose, i)
if i.getbands() != ("R", "G", "B", "A"):
if i.mode == 'I':
i = i.point(lambda i: i * (1 / 255))
i = i.convert("RGBA")
mask = None
c = channel[0].upper()
if c in i.getbands():
mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
mask = torch.from_numpy(mask)
if c == 'A':
mask = 1. - mask
else:
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
return (mask.unsqueeze(0),)
@classmethod
def IS_CHANGED(s, image, channel):
image_path = folder_paths.get_annotated_filepath(image)
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()
2023-03-09 18:18:08 +00:00
@classmethod
def VALIDATE_INPUTS(s, image):
if not folder_paths.exists_annotated_filepath(image):
return "Invalid image file: {}".format(image)
return True
class ImageScale:
2023-09-19 08:40:38 +00:00
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
crop_methods = ["disabled", "center"]
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
2023-09-24 15:08:54 +00:00
"width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"crop": (s.crop_methods,)}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "upscale"
CATEGORY = "image/upscaling"
def upscale(self, image, upscale_method, width, height, crop):
2023-09-24 15:08:54 +00:00
if width == 0 and height == 0:
s = image
else:
samples = image.movedim(-1,1)
if width == 0:
width = max(1, round(samples.shape[3] * height / samples.shape[2]))
elif height == 0:
height = max(1, round(samples.shape[2] * width / samples.shape[3]))
s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
s = s.movedim(1,-1)
return (s,)
2023-01-03 06:53:32 +00:00
2023-06-12 05:14:04 +00:00
class ImageScaleBy:
2023-09-19 08:40:38 +00:00
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
2023-06-12 05:14:04 +00:00
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
"scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "upscale"
CATEGORY = "image/upscaling"
def upscale(self, image, upscale_method, scale_by):
samples = image.movedim(-1,1)
width = round(samples.shape[3] * scale_by)
height = round(samples.shape[2] * scale_by)
s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
s = s.movedim(1,-1)
return (s,)
class ImageInvert:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",)}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "invert"
CATEGORY = "image"
def invert(self, image):
s = 1.0 - image
return (s,)
2023-08-15 00:23:38 +00:00
class ImageBatch:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image1": ("IMAGE",), "image2": ("IMAGE",)}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "batch"
CATEGORY = "image"
def batch(self, image1, image2):
if image1.shape[1:] != image2.shape[1:]:
image2 = comfy.utils.common_upscale(image2.movedim(-1,1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1,-1)
s = torch.cat((image1, image2), dim=0)
return (s,)
class EmptyImage:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required": { "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
2023-09-25 05:46:44 +00:00
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
"color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "generate"
CATEGORY = "image"
def generate(self, width, height, batch_size=1, color=0):
r = torch.full([batch_size, height, width, 1], ((color >> 16) & 0xFF) / 0xFF)
g = torch.full([batch_size, height, width, 1], ((color >> 8) & 0xFF) / 0xFF)
b = torch.full([batch_size, height, width, 1], ((color) & 0xFF) / 0xFF)
return (torch.cat((r, g, b), dim=-1), )
2023-03-23 15:33:35 +00:00
class ImagePadForOutpaint:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
2023-05-02 18:16:27 +00:00
"left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
2023-03-25 08:49:58 +00:00
"feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
2023-03-23 15:33:35 +00:00
}
}
RETURN_TYPES = ("IMAGE", "MASK")
FUNCTION = "expand_image"
CATEGORY = "image"
def expand_image(self, image, left, top, right, bottom, feathering):
2023-03-23 15:33:35 +00:00
d1, d2, d3, d4 = image.size()
new_image = torch.ones(
2023-03-23 15:33:35 +00:00
(d1, d2 + top + bottom, d3 + left + right, d4),
dtype=torch.float32,
) * 0.5
2023-03-23 15:33:35 +00:00
new_image[:, top:top + d2, left:left + d3, :] = image
mask = torch.ones(
(d2 + top + bottom, d3 + left + right),
dtype=torch.float32,
)
t = torch.zeros(
(d2, d3),
dtype=torch.float32
)
if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
for i in range(d2):
for j in range(d3):
dt = i if top != 0 else d2
db = d2 - i if bottom != 0 else d2
dl = j if left != 0 else d3
dr = d3 - j if right != 0 else d3
d = min(dt, db, dl, dr)
if d >= feathering:
continue
v = (feathering - d) / feathering
t[i, j] = v * v
mask[top:top + d2, left:left + d3] = t
2023-03-23 15:33:35 +00:00
return (new_image, mask)
2023-01-03 06:53:32 +00:00
NODE_CLASS_MAPPINGS = {
"KSampler": KSampler,
"CheckpointLoaderSimple": CheckpointLoaderSimple,
2023-01-03 06:53:32 +00:00
"CLIPTextEncode": CLIPTextEncode,
"CLIPSetLastLayer": CLIPSetLastLayer,
2023-01-03 06:53:32 +00:00
"VAEDecode": VAEDecode,
"VAEEncode": VAEEncode,
"VAEEncodeForInpaint": VAEEncodeForInpaint,
2023-01-03 06:53:32 +00:00
"VAELoader": VAELoader,
"EmptyLatentImage": EmptyLatentImage,
"LatentUpscale": LatentUpscale,
2023-05-23 16:53:38 +00:00
"LatentUpscaleBy": LatentUpscaleBy,
"LatentFromBatch": LatentFromBatch,
"RepeatLatentBatch": RepeatLatentBatch,
2023-01-03 06:53:32 +00:00
"SaveImage": SaveImage,
2023-03-14 19:28:07 +00:00
"PreviewImage": PreviewImage,
"LoadImage": LoadImage,
"LoadImageMask": LoadImageMask,
"ImageScale": ImageScale,
2023-06-12 05:14:04 +00:00
"ImageScaleBy": ImageScaleBy,
"ImageInvert": ImageInvert,
2023-08-15 00:23:38 +00:00
"ImageBatch": ImageBatch,
2023-03-23 15:33:35 +00:00
"ImagePadForOutpaint": ImagePadForOutpaint,
"EmptyImage": EmptyImage,
2023-09-24 17:27:57 +00:00
"ConditioningAverage": ConditioningAverage ,
"ConditioningCombine": ConditioningCombine,
"ConditioningConcat": ConditioningConcat,
"ConditioningSetArea": ConditioningSetArea,
"ConditioningSetAreaPercentage": ConditioningSetAreaPercentage,
"ConditioningSetAreaStrength": ConditioningSetAreaStrength,
"ConditioningSetMask": ConditioningSetMask,
"KSamplerAdvanced": KSamplerAdvanced,
"SetLatentNoiseMask": SetLatentNoiseMask,
"LatentComposite": LatentComposite,
"LatentBlend": LatentBlend,
2023-01-31 07:28:07 +00:00
"LatentRotate": LatentRotate,
2023-01-31 08:28:38 +00:00
"LatentFlip": LatentFlip,
2023-02-04 20:21:46 +00:00
"LatentCrop": LatentCrop,
"LoraLoader": LoraLoader,
"CLIPLoader": CLIPLoader,
"UNETLoader": UNETLoader,
"DualCLIPLoader": DualCLIPLoader,
"CLIPVisionEncode": CLIPVisionEncode,
"StyleModelApply": StyleModelApply,
"unCLIPConditioning": unCLIPConditioning,
2023-02-16 15:38:08 +00:00
"ControlNetApply": ControlNetApply,
"ControlNetApplyAdvanced": ControlNetApplyAdvanced,
2023-02-16 15:38:08 +00:00
"ControlNetLoader": ControlNetLoader,
2023-02-23 04:22:03 +00:00
"DiffControlNetLoader": DiffControlNetLoader,
2023-03-06 06:30:17 +00:00
"StyleModelLoader": StyleModelLoader,
"CLIPVisionLoader": CLIPVisionLoader,
"VAEDecodeTiled": VAEDecodeTiled,
2023-03-11 20:28:15 +00:00
"VAEEncodeTiled": VAEEncodeTiled,
"unCLIPCheckpointLoader": unCLIPCheckpointLoader,
2023-04-19 13:36:19 +00:00
"GLIGENLoader": GLIGENLoader,
"GLIGENTextBoxApply": GLIGENTextBoxApply,
"InpaintModelConditioning": InpaintModelConditioning,
2023-04-19 13:36:19 +00:00
2023-04-05 02:48:11 +00:00
"CheckpointLoader": CheckpointLoader,
2023-04-06 06:57:31 +00:00
"DiffusersLoader": DiffusersLoader,
"LoadLatent": LoadLatent,
"SaveLatent": SaveLatent,
"ConditioningZeroOut": ConditioningZeroOut,
"ConditioningSetTimestepRange": ConditioningSetTimestepRange,
"LoraLoaderModelOnly": LoraLoaderModelOnly,
2023-01-03 06:53:32 +00:00
}
2023-03-30 21:13:58 +00:00
NODE_DISPLAY_NAME_MAPPINGS = {
# Sampling
"KSampler": "KSampler",
"KSamplerAdvanced": "KSampler (Advanced)",
# Loaders
"CheckpointLoader": "Load Checkpoint With Config (DEPRECATED)",
2023-04-08 19:53:01 +00:00
"CheckpointLoaderSimple": "Load Checkpoint",
2023-03-30 21:13:58 +00:00
"VAELoader": "Load VAE",
"LoraLoader": "Load LoRA",
"CLIPLoader": "Load CLIP",
"ControlNetLoader": "Load ControlNet Model",
"DiffControlNetLoader": "Load ControlNet Model (diff)",
"StyleModelLoader": "Load Style Model",
"CLIPVisionLoader": "Load CLIP Vision",
"UpscaleModelLoader": "Load Upscale Model",
"UNETLoader": "Load Diffusion Model",
2023-03-30 21:13:58 +00:00
# Conditioning
"CLIPVisionEncode": "CLIP Vision Encode",
"StyleModelApply": "Apply Style Model",
"CLIPTextEncode": "CLIP Text Encode (Prompt)",
"CLIPSetLastLayer": "CLIP Set Last Layer",
"ConditioningCombine": "Conditioning (Combine)",
"ConditioningAverage ": "Conditioning (Average)",
"ConditioningConcat": "Conditioning (Concat)",
2023-03-30 21:13:58 +00:00
"ConditioningSetArea": "Conditioning (Set Area)",
"ConditioningSetAreaPercentage": "Conditioning (Set Area with Percentage)",
"ConditioningSetMask": "Conditioning (Set Mask)",
"ControlNetApply": "Apply ControlNet (OLD)",
"ControlNetApplyAdvanced": "Apply ControlNet",
2023-03-30 21:13:58 +00:00
# Latent
"VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
"SetLatentNoiseMask": "Set Latent Noise Mask",
"VAEDecode": "VAE Decode",
"VAEEncode": "VAE Encode",
"LatentRotate": "Rotate Latent",
"LatentFlip": "Flip Latent",
"LatentCrop": "Crop Latent",
"EmptyLatentImage": "Empty Latent Image",
"LatentUpscale": "Upscale Latent",
2023-05-23 16:53:38 +00:00
"LatentUpscaleBy": "Upscale Latent By",
2023-03-30 21:13:58 +00:00
"LatentComposite": "Latent Composite",
"LatentBlend": "Latent Blend",
"LatentFromBatch" : "Latent From Batch",
"RepeatLatentBatch": "Repeat Latent Batch",
2023-03-30 21:13:58 +00:00
# Image
"SaveImage": "Save Image",
"PreviewImage": "Preview Image",
"LoadImage": "Load Image",
"LoadImageMask": "Load Image (as Mask)",
"ImageScale": "Upscale Image",
2023-06-12 05:14:04 +00:00
"ImageScaleBy": "Upscale Image By",
2023-03-30 21:13:58 +00:00
"ImageUpscaleWithModel": "Upscale Image (using Model)",
"ImageInvert": "Invert Image",
"ImagePadForOutpaint": "Pad Image for Outpainting",
2023-08-15 00:23:38 +00:00
"ImageBatch": "Batch Images",
"ImageCrop": "Image Crop",
"ImageBlend": "Image Blend",
"ImageBlur": "Image Blur",
"ImageQuantize": "Image Quantize",
"ImageSharpen": "Image Sharpen",
"ImageScaleToTotalPixels": "Scale Image to Total Pixels",
2023-03-30 21:13:58 +00:00
# _for_testing
"VAEDecodeTiled": "VAE Decode (Tiled)",
"VAEEncodeTiled": "VAE Encode (Tiled)",
}
EXTENSION_WEB_DIRS = {}
def get_module_name(module_path: str) -> str:
"""
Returns the module name based on the given module path.
Examples:
get_module_name("C:/Users/username/ComfyUI/custom_nodes/my_custom_node.py") -> "my_custom_node"
get_module_name("C:/Users/username/ComfyUI/custom_nodes/my_custom_node") -> "my_custom_node"
get_module_name("C:/Users/username/ComfyUI/custom_nodes/my_custom_node/") -> "my_custom_node"
get_module_name("C:/Users/username/ComfyUI/custom_nodes/my_custom_node/__init__.py") -> "my_custom_node"
get_module_name("C:/Users/username/ComfyUI/custom_nodes/my_custom_node/__init__") -> "my_custom_node"
get_module_name("C:/Users/username/ComfyUI/custom_nodes/my_custom_node/__init__/") -> "my_custom_node"
get_module_name("C:/Users/username/ComfyUI/custom_nodes/my_custom_node.disabled") -> "custom_nodes
Args:
module_path (str): The path of the module.
Returns:
str: The module name.
"""
base_path = os.path.basename(module_path)
if os.path.isfile(module_path):
base_path = os.path.splitext(base_path)[0]
return base_path
def load_custom_node(module_path: str, ignore=set(), module_parent="custom_nodes") -> bool:
2024-07-05 01:09:05 +00:00
module_name = os.path.basename(module_path)
2024-07-05 01:49:50 +00:00
if os.path.isfile(module_path):
sp = os.path.splitext(module_path)
module_name = sp[0]
try:
logging.debug("Trying to load custom node {}".format(module_path))
if os.path.isfile(module_path):
module_spec = importlib.util.spec_from_file_location(module_name, module_path)
module_dir = os.path.split(module_path)[0]
else:
module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
module_dir = module_path
module = importlib.util.module_from_spec(module_spec)
sys.modules[module_name] = module
module_spec.loader.exec_module(module)
if hasattr(module, "WEB_DIRECTORY") and getattr(module, "WEB_DIRECTORY") is not None:
web_dir = os.path.abspath(os.path.join(module_dir, getattr(module, "WEB_DIRECTORY")))
if os.path.isdir(web_dir):
EXTENSION_WEB_DIRS[module_name] = web_dir
if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
for name, node_cls in module.NODE_CLASS_MAPPINGS.items():
if name not in ignore:
NODE_CLASS_MAPPINGS[name] = node_cls
node_cls.RELATIVE_PYTHON_MODULE = "{}.{}".format(module_parent, get_module_name(module_path))
if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
return True
else:
2024-03-11 04:56:41 +00:00
logging.warning(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
return False
except Exception as e:
2024-03-11 04:56:41 +00:00
logging.warning(traceback.format_exc())
2024-03-11 20:24:47 +00:00
logging.warning(f"Cannot import {module_path} module for custom nodes: {e}")
return False
def init_external_custom_nodes():
"""
Initializes the external custom nodes.
This function loads custom nodes from the specified folder paths and imports them into the application.
It measures the import times for each custom node and logs the results.
Returns:
None
"""
base_node_names = set(NODE_CLASS_MAPPINGS.keys())
node_paths = folder_paths.get_folder_paths("custom_nodes")
node_import_times = []
for custom_node_path in node_paths:
2023-11-23 21:24:58 +00:00
possible_modules = os.listdir(os.path.realpath(custom_node_path))
if "__pycache__" in possible_modules:
possible_modules.remove("__pycache__")
for possible_module in possible_modules:
module_path = os.path.join(custom_node_path, possible_module)
if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
if module_path.endswith(".disabled"): continue
time_before = time.perf_counter()
success = load_custom_node(module_path, base_node_names, module_parent="custom_nodes")
node_import_times.append((time.perf_counter() - time_before, module_path, success))
2023-05-13 17:15:31 +00:00
if len(node_import_times) > 0:
logging.info("\nImport times for custom nodes:")
2023-05-13 17:15:31 +00:00
for n in sorted(node_import_times):
if n[2]:
import_message = ""
else:
import_message = " (IMPORT FAILED)"
logging.info("{:6.1f} seconds{}: {}".format(n[0], import_message, n[1]))
logging.info("")
def init_builtin_extra_nodes():
"""
Initializes the built-in extra nodes in ComfyUI.
This function loads the extra node files located in the "comfy_extras" directory and imports them into ComfyUI.
If any of the extra node files fail to import, a warning message is logged.
Returns:
None
"""
extras_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras")
extras_files = [
"nodes_latent.py",
"nodes_hypernetwork.py",
"nodes_upscale_model.py",
"nodes_post_processing.py",
"nodes_mask.py",
"nodes_compositing.py",
"nodes_rebatch.py",
"nodes_model_merging.py",
"nodes_tomesd.py",
"nodes_clip_sdxl.py",
"nodes_canny.py",
"nodes_freelunch.py",
"nodes_custom_sampler.py",
"nodes_hypertile.py",
"nodes_model_advanced.py",
"nodes_model_downscale.py",
2023-11-18 09:44:17 +00:00
"nodes_images.py",
"nodes_video_model.py",
"nodes_sag.py",
2023-12-15 18:58:16 +00:00
"nodes_perpneg.py",
"nodes_stable3d.py",
"nodes_sdupscale.py",
"nodes_photomaker.py",
"nodes_cond.py",
"nodes_morphology.py",
2024-02-16 17:56:11 +00:00
"nodes_stable_cascade.py",
"nodes_differential_diffusion.py",
2024-04-04 19:06:17 +00:00
"nodes_ip2p.py",
"nodes_model_merging_model_specific.py",
2024-04-15 03:34:25 +00:00
"nodes_pag.py",
"nodes_align_your_steps.py",
"nodes_attention_multiply.py",
"nodes_advanced_samplers.py",
"nodes_webcam.py",
"nodes_audio.py",
2024-06-10 17:26:25 +00:00
"nodes_sd3.py",
2024-06-20 12:12:15 +00:00
"nodes_gits.py",
"nodes_controlnet.py",
"nodes_hunyuan.py",
2024-08-01 22:53:25 +00:00
"nodes_flux.py",
"nodes_lora_extract.py",
"nodes_torch_compile.py",
"nodes_mochi.py",
"nodes_slg.py",
2024-11-22 13:44:42 +00:00
"nodes_lt.py",
]
import_failed = []
for node_file in extras_files:
if not load_custom_node(os.path.join(extras_dir, node_file), module_parent="comfy_extras"):
import_failed.append(node_file)
return import_failed
def init_extra_nodes(init_custom_nodes=True):
2024-07-05 01:49:50 +00:00
import_failed = init_builtin_extra_nodes()
if init_custom_nodes:
init_external_custom_nodes()
else:
logging.info("Skipping loading of custom nodes")
if len(import_failed) > 0:
2024-03-11 04:56:41 +00:00
logging.warning("WARNING: some comfy_extras/ nodes did not import correctly. This may be because they are missing some dependencies.\n")
for node in import_failed:
2024-03-11 04:56:41 +00:00
logging.warning("IMPORT FAILED: {}".format(node))
logging.warning("\nThis issue might be caused by new missing dependencies added the last time you updated ComfyUI.")
if args.windows_standalone_build:
2024-03-11 04:56:41 +00:00
logging.warning("Please run the update script: update/update_comfyui.bat")
else:
2024-03-11 04:56:41 +00:00
logging.warning("Please do a: pip install -r requirements.txt")
logging.warning("")
return import_failed