Implement Perp-Neg
This commit is contained in:
parent
a5056cfb1f
commit
574363a8a6
|
@ -251,7 +251,8 @@ def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_option
|
|||
|
||||
cond_pred, uncond_pred = calc_cond_uncond_batch(model, cond, uncond_, x, timestep, model_options)
|
||||
if "sampler_cfg_function" in model_options:
|
||||
args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep}
|
||||
args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep,
|
||||
"cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options}
|
||||
cfg_result = x - model_options["sampler_cfg_function"](args)
|
||||
else:
|
||||
cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale
|
||||
|
|
|
@ -0,0 +1,58 @@
|
|||
import torch
|
||||
import comfy.model_management
|
||||
import comfy.sample
|
||||
import comfy.samplers
|
||||
import comfy.utils
|
||||
|
||||
|
||||
class PerpNeg:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"model": ("MODEL", ),
|
||||
"clip": ("CLIP", ),
|
||||
"neg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0}),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
|
||||
CATEGORY = "_for_testing"
|
||||
|
||||
def patch(self, model, clip, neg_scale):
|
||||
m = model.clone()
|
||||
|
||||
tokens = clip.tokenize("")
|
||||
nocond, nocond_pooled = clip.encode_from_tokens(tokens, return_pooled=True)
|
||||
nocond = [[nocond, {"pooled_output": nocond_pooled}]]
|
||||
nocond = comfy.sample.convert_cond(nocond)
|
||||
|
||||
def cfg_function(args):
|
||||
model = args["model"]
|
||||
noise_pred_pos = args["cond_denoised"]
|
||||
noise_pred_neg = args["uncond_denoised"]
|
||||
cond_scale = args["cond_scale"]
|
||||
x = args["input"]
|
||||
sigma = args["sigma"]
|
||||
model_options = args["model_options"]
|
||||
|
||||
(noise_pred_nocond, _) = comfy.samplers.calc_cond_uncond_batch(model, nocond, None, x, sigma, model_options)
|
||||
|
||||
pos = noise_pred_pos - noise_pred_nocond
|
||||
neg = noise_pred_neg - noise_pred_nocond
|
||||
perp = ((torch.mul(pos, neg).sum())/(torch.norm(neg)**2)) * neg
|
||||
perp_neg = perp * neg_scale
|
||||
cfg_result = noise_pred_nocond + cond_scale*(pos - perp_neg)
|
||||
cfg_result = x - cfg_result
|
||||
return cfg_result
|
||||
|
||||
m.set_model_sampler_cfg_function(cfg_function)
|
||||
|
||||
return (m, )
|
||||
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"PerpNeg": PerpNeg,
|
||||
}
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"PerpNeg": "Perp-Neg",
|
||||
}
|
Loading…
Reference in New Issue