Add ConditioningSetArea node.
to apply conditioning/prompts only to a specific area of the image. Add ConditioningCombine node. so that multiple conditioning/prompts can be applied to the image at the same time
This commit is contained in:
parent
52472cc88d
commit
c4b02059d0
|
@ -9,7 +9,7 @@ class CFGDenoiser(torch.nn.Module):
|
|||
self.inner_model = model
|
||||
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale):
|
||||
if len(uncond[0]) == len(cond[0]) and x.shape[0] * x.shape[2] * x.shape[3] <= (96 * 96): #TODO check memory instead
|
||||
if len(uncond[0]) == len(cond[0]) and x.shape[0] * x.shape[2] * x.shape[3] < (96 * 96): #TODO check memory instead
|
||||
x_in = torch.cat([x] * 2)
|
||||
sigma_in = torch.cat([sigma] * 2)
|
||||
cond_in = torch.cat([uncond, cond])
|
||||
|
@ -19,6 +19,61 @@ class CFGDenoiser(torch.nn.Module):
|
|||
uncond = self.inner_model(x, sigma, cond=uncond)
|
||||
return uncond + (cond - uncond) * cond_scale
|
||||
|
||||
class CFGDenoiserComplex(torch.nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.inner_model = model
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale):
|
||||
def calc_cond(cond, x_in, sigma):
|
||||
out_cond = torch.zeros_like(x_in)
|
||||
out_count = torch.ones_like(x_in)/100000.0
|
||||
sigma_cmp = sigma[0]
|
||||
|
||||
for x in cond:
|
||||
area = (x_in.shape[2], x_in.shape[3], 0, 0)
|
||||
strength = 1.0
|
||||
min_sigma = 0.0
|
||||
max_sigma = 999.0
|
||||
if 'area' in x[1]:
|
||||
area = x[1]['area']
|
||||
if 'strength' in x[1]:
|
||||
strength = x[1]['strength']
|
||||
if 'min_sigma' in x[1]:
|
||||
min_sigma = x[1]['min_sigma']
|
||||
if 'max_sigma' in x[1]:
|
||||
max_sigma = x[1]['max_sigma']
|
||||
if sigma_cmp < min_sigma or sigma_cmp > max_sigma:
|
||||
continue
|
||||
input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
|
||||
mult = torch.ones_like(input_x) * strength
|
||||
|
||||
rr = 8
|
||||
if area[2] != 0:
|
||||
for t in range(rr):
|
||||
mult[:,:,area[2]+t:area[2]+1+t,:] *= ((1.0/rr) * (t + 1))
|
||||
if (area[0] + area[2]) < x_in.shape[2]:
|
||||
for t in range(rr):
|
||||
mult[:,:,area[0] + area[2] - 1 - t:area[0] + area[2] - t,:] *= ((1.0/rr) * (t + 1))
|
||||
if area[3] != 0:
|
||||
for t in range(rr):
|
||||
mult[:,:,:,area[3]+t:area[3]+1+t] *= ((1.0/rr) * (t + 1))
|
||||
if (area[1] + area[3]) < x_in.shape[3]:
|
||||
for t in range(rr):
|
||||
mult[:,:,:,area[1] + area[3] - 1 - t:area[1] + area[3] - t] *= ((1.0/rr) * (t + 1))
|
||||
|
||||
out_cond[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] += self.inner_model(input_x, sigma, cond=x[0]) * mult
|
||||
out_count[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] += mult
|
||||
del input_x
|
||||
del mult
|
||||
|
||||
out_cond /= out_count
|
||||
del out_count
|
||||
return out_cond
|
||||
|
||||
cond = calc_cond(cond, x, sigma)
|
||||
uncond = calc_cond(uncond, x, sigma)
|
||||
|
||||
return uncond + (cond - uncond) * cond_scale
|
||||
|
||||
def simple_scheduler(model, steps):
|
||||
sigs = []
|
||||
|
@ -28,6 +83,35 @@ def simple_scheduler(model, steps):
|
|||
sigs += [0.0]
|
||||
return torch.FloatTensor(sigs)
|
||||
|
||||
def create_cond_with_same_area_if_none(conds, c):
|
||||
if 'area' not in c[1]:
|
||||
return
|
||||
|
||||
c_area = c[1]['area']
|
||||
smallest = None
|
||||
for x in conds:
|
||||
if 'area' in x[1]:
|
||||
a = x[1]['area']
|
||||
if c_area[2] >= a[2] and c_area[3] >= a[3]:
|
||||
if a[0] + a[2] >= c_area[0] + c_area[2]:
|
||||
if a[1] + a[3] >= c_area[1] + c_area[3]:
|
||||
if smallest is None:
|
||||
smallest = x
|
||||
elif 'area' not in smallest[1]:
|
||||
smallest = x
|
||||
else:
|
||||
if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]:
|
||||
smallest = x
|
||||
else:
|
||||
if smallest is None:
|
||||
smallest = x
|
||||
if smallest is None:
|
||||
return
|
||||
if 'area' in smallest[1]:
|
||||
if smallest[1]['area'] == c_area:
|
||||
return
|
||||
n = c[1].copy()
|
||||
conds += [[smallest[0], n]]
|
||||
|
||||
class KSampler:
|
||||
SCHEDULERS = ["karras", "normal", "simple"]
|
||||
|
@ -41,7 +125,7 @@ class KSampler:
|
|||
self.model_wrap = k_diffusion.external.CompVisVDenoiser(self.model, quantize=True)
|
||||
else:
|
||||
self.model_wrap = k_diffusion.external.CompVisDenoiser(self.model, quantize=True)
|
||||
self.model_k = CFGDenoiser(self.model_wrap)
|
||||
self.model_k = CFGDenoiserComplex(self.model_wrap)
|
||||
self.device = device
|
||||
if scheduler not in self.SCHEDULERS:
|
||||
scheduler = self.SCHEDULERS[0]
|
||||
|
@ -94,11 +178,18 @@ class KSampler:
|
|||
if start_step is not None:
|
||||
sigmas = sigmas[start_step:]
|
||||
|
||||
|
||||
noise *= sigmas[0]
|
||||
if latent_image is not None:
|
||||
noise += latent_image
|
||||
|
||||
positive = positive[:]
|
||||
negative = negative[:]
|
||||
#make sure each cond area has an opposite one with the same area
|
||||
for c in positive:
|
||||
create_cond_with_same_area_if_none(negative, c)
|
||||
for c in negative:
|
||||
create_cond_with_same_area_if_none(positive, c)
|
||||
|
||||
if self.model.model.diffusion_model.dtype == torch.float16:
|
||||
precision_scope = torch.autocast
|
||||
else:
|
||||
|
|
62
nodes.py
62
nodes.py
|
@ -4,6 +4,7 @@ import os
|
|||
import sys
|
||||
import json
|
||||
import hashlib
|
||||
import copy
|
||||
|
||||
from PIL import Image
|
||||
from PIL.PngImagePlugin import PngInfo
|
||||
|
@ -33,7 +34,39 @@ class CLIPTextEncode:
|
|||
FUNCTION = "encode"
|
||||
|
||||
def encode(self, clip, text):
|
||||
return (clip.encode(text), )
|
||||
return ([[clip.encode(text), {}]], )
|
||||
|
||||
class ConditioningCombine:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
|
||||
RETURN_TYPES = ("CONDITIONING",)
|
||||
FUNCTION = "combine"
|
||||
|
||||
def combine(self, conditioning_1, conditioning_2):
|
||||
return (conditioning_1 + conditioning_2, )
|
||||
|
||||
class ConditioningSetArea:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"conditioning": ("CONDITIONING", ),
|
||||
"width": ("INT", {"default": 64, "min": 64, "max": 4096, "step": 64}),
|
||||
"height": ("INT", {"default": 64, "min": 64, "max": 4096, "step": 64}),
|
||||
"x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}),
|
||||
"y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}),
|
||||
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("CONDITIONING",)
|
||||
FUNCTION = "append"
|
||||
|
||||
def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0):
|
||||
c = copy.deepcopy(conditioning)
|
||||
for t in c:
|
||||
t[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
|
||||
t[1]['strength'] = strength
|
||||
t[1]['min_sigma'] = min_sigma
|
||||
t[1]['max_sigma'] = max_sigma
|
||||
return (c, )
|
||||
|
||||
class VAEDecode:
|
||||
def __init__(self, device="cpu"):
|
||||
|
@ -172,14 +205,21 @@ class KSampler:
|
|||
noise = noise.to(self.device)
|
||||
latent_image = latent_image.to(self.device)
|
||||
|
||||
if positive.shape[0] < noise.shape[0]:
|
||||
positive = torch.cat([positive] * noise.shape[0])
|
||||
positive_copy = []
|
||||
negative_copy = []
|
||||
|
||||
if negative.shape[0] < noise.shape[0]:
|
||||
negative = torch.cat([negative] * noise.shape[0])
|
||||
|
||||
positive = positive.to(self.device)
|
||||
negative = negative.to(self.device)
|
||||
for p in positive:
|
||||
t = p[0]
|
||||
if t.shape[0] < noise.shape[0]:
|
||||
t = torch.cat([t] * noise.shape[0])
|
||||
t = t.to(self.device)
|
||||
positive_copy += [[t] + p[1:]]
|
||||
for n in negative:
|
||||
t = n[0]
|
||||
if t.shape[0] < noise.shape[0]:
|
||||
t = torch.cat([t] * noise.shape[0])
|
||||
t = t.to(self.device)
|
||||
negative_copy += [[t] + n[1:]]
|
||||
|
||||
if sampler_name in comfy.samplers.KSampler.SAMPLERS:
|
||||
sampler = comfy.samplers.KSampler(model, steps=steps, device=self.device, sampler=sampler_name, scheduler=scheduler, denoise=denoise)
|
||||
|
@ -187,7 +227,7 @@ class KSampler:
|
|||
#other samplers
|
||||
pass
|
||||
|
||||
samples = sampler.sample(noise, positive, negative, cfg=cfg, latent_image=latent_image)
|
||||
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image)
|
||||
samples = samples.cpu()
|
||||
model = model.cpu()
|
||||
return (samples, )
|
||||
|
@ -272,7 +312,9 @@ NODE_CLASS_MAPPINGS = {
|
|||
"EmptyLatentImage": EmptyLatentImage,
|
||||
"LatentUpscale": LatentUpscale,
|
||||
"SaveImage": SaveImage,
|
||||
"LoadImage": LoadImage
|
||||
"LoadImage": LoadImage,
|
||||
"ConditioningCombine": ConditioningCombine,
|
||||
"ConditioningSetArea": ConditioningSetArea,
|
||||
}
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue