Add a SamplerCustom Node.
This node takes a list of sigmas and a sampler object as input. This lets people easily implement custom schedulers and samplers as nodes. More nodes will be added to it in the future.
This commit is contained in:
parent
bf3fc2f1b7
commit
1adcc4c3a2
|
@ -99,3 +99,15 @@ def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative
|
|||
|
||||
cleanup_additional_models(models)
|
||||
return samples
|
||||
|
||||
def sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=None, callback=None, disable_pbar=False, seed=None):
|
||||
real_model, positive_copy, negative_copy, noise_mask, models = prepare_sampling(model, noise.shape, positive, negative, noise_mask)
|
||||
noise = noise.to(model.load_device)
|
||||
latent_image = latent_image.to(model.load_device)
|
||||
sigmas = sigmas.to(model.load_device)
|
||||
|
||||
samples = comfy.samplers.sample(real_model, noise, positive_copy, negative_copy, cfg, model.load_device, sampler, sigmas, model_options=model.model_options, latent_image=latent_image, denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
|
||||
samples = samples.cpu()
|
||||
cleanup_additional_models(models)
|
||||
return samples
|
||||
|
||||
|
|
|
@ -0,0 +1,98 @@
|
|||
import comfy.samplers
|
||||
import comfy.sample
|
||||
from comfy.k_diffusion import sampling as k_diffusion_sampling
|
||||
import latent_preview
|
||||
|
||||
|
||||
class KarrasScheduler:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required":
|
||||
{"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
|
||||
"sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
|
||||
"sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
|
||||
"rho": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("SIGMAS",)
|
||||
CATEGORY = "_for_testing/custom_sampling"
|
||||
|
||||
FUNCTION = "get_sigmas"
|
||||
|
||||
def get_sigmas(self, steps, sigma_max, sigma_min, rho):
|
||||
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
|
||||
return (sigmas, )
|
||||
|
||||
|
||||
class KSamplerSelect:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required":
|
||||
{"sampler_name": (comfy.samplers.KSAMPLER_NAMES, ),
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("SAMPLER",)
|
||||
CATEGORY = "_for_testing/custom_sampling"
|
||||
|
||||
FUNCTION = "get_sampler"
|
||||
|
||||
def get_sampler(self, sampler_name):
|
||||
sampler = comfy.samplers.ksampler(sampler_name)()
|
||||
return (sampler, )
|
||||
|
||||
class SamplerCustom:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required":
|
||||
{"model": ("MODEL",),
|
||||
"add_noise": (["enable", "disable"], ),
|
||||
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
||||
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}),
|
||||
"positive": ("CONDITIONING", ),
|
||||
"negative": ("CONDITIONING", ),
|
||||
"sampler": ("SAMPLER", ),
|
||||
"sigmas": ("SIGMAS", ),
|
||||
"latent_image": ("LATENT", ),
|
||||
}
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("LATENT","LATENT")
|
||||
RETURN_NAMES = ("output", "denoised_output")
|
||||
|
||||
FUNCTION = "sample"
|
||||
|
||||
CATEGORY = "_for_testing/custom_sampling"
|
||||
|
||||
def sample(self, model, add_noise, noise_seed, cfg, positive, negative, sampler, sigmas, latent_image):
|
||||
latent = latent_image
|
||||
latent_image = latent["samples"]
|
||||
if add_noise == "disable":
|
||||
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
|
||||
else:
|
||||
batch_inds = latent["batch_index"] if "batch_index" in latent else None
|
||||
noise = comfy.sample.prepare_noise(latent_image, noise_seed, batch_inds)
|
||||
|
||||
noise_mask = None
|
||||
if "noise_mask" in latent:
|
||||
noise_mask = latent["noise_mask"]
|
||||
|
||||
x0_output = {}
|
||||
callback = latent_preview.prepare_callback(model, sigmas.shape[-1] - 1, x0_output)
|
||||
|
||||
disable_pbar = False
|
||||
samples = comfy.sample.sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise_seed)
|
||||
|
||||
out = latent.copy()
|
||||
out["samples"] = samples
|
||||
if "x0" in x0_output:
|
||||
out_denoised = latent.copy()
|
||||
out_denoised["samples"] = model.model.process_latent_out(x0_output["x0"].cpu())
|
||||
else:
|
||||
out_denoised = out
|
||||
return (out, out_denoised)
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"SamplerCustom": SamplerCustom,
|
||||
"KarrasScheduler": KarrasScheduler,
|
||||
"KSamplerSelect": KSamplerSelect,
|
||||
}
|
4
nodes.py
4
nodes.py
|
@ -1202,9 +1202,10 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive,
|
|||
noise_mask = latent["noise_mask"]
|
||||
|
||||
callback = latent_preview.prepare_callback(model, steps)
|
||||
disable_pbar = False
|
||||
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
|
||||
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
|
||||
force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, seed=seed)
|
||||
force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
|
||||
out = latent.copy()
|
||||
out["samples"] = samples
|
||||
return (out, )
|
||||
|
@ -1791,4 +1792,5 @@ def init_custom_nodes():
|
|||
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_clip_sdxl.py"))
|
||||
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_canny.py"))
|
||||
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_freelunch.py"))
|
||||
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_custom_sampler.py"))
|
||||
load_custom_nodes()
|
||||
|
|
Loading…
Reference in New Issue