Support base SDXL and SDXL refiner models.
Large refactor of the model detection and loading code.
This commit is contained in:
parent
9fccf4aa03
commit
f87ec10a97
|
@ -34,8 +34,10 @@ class ControlNet(nn.Module):
|
|||
channel_mult=(1, 2, 4, 8),
|
||||
conv_resample=True,
|
||||
dims=2,
|
||||
num_classes=None,
|
||||
use_checkpoint=False,
|
||||
use_fp16=False,
|
||||
use_bf16=False,
|
||||
num_heads=-1,
|
||||
num_head_channels=-1,
|
||||
num_heads_upsample=-1,
|
||||
|
@ -51,6 +53,8 @@ class ControlNet(nn.Module):
|
|||
num_attention_blocks=None,
|
||||
disable_middle_self_attn=False,
|
||||
use_linear_in_transformer=False,
|
||||
adm_in_channels=None,
|
||||
transformer_depth_middle=None,
|
||||
):
|
||||
super().__init__()
|
||||
if use_spatial_transformer:
|
||||
|
@ -75,6 +79,10 @@ class ControlNet(nn.Module):
|
|||
self.image_size = image_size
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
if isinstance(transformer_depth, int):
|
||||
transformer_depth = len(channel_mult) * [transformer_depth]
|
||||
if transformer_depth_middle is None:
|
||||
transformer_depth_middle = transformer_depth[-1]
|
||||
if isinstance(num_res_blocks, int):
|
||||
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
||||
else:
|
||||
|
@ -97,8 +105,10 @@ class ControlNet(nn.Module):
|
|||
self.dropout = dropout
|
||||
self.channel_mult = channel_mult
|
||||
self.conv_resample = conv_resample
|
||||
self.num_classes = num_classes
|
||||
self.use_checkpoint = use_checkpoint
|
||||
self.dtype = th.float16 if use_fp16 else th.float32
|
||||
self.dtype = th.bfloat16 if use_bf16 else self.dtype
|
||||
self.num_heads = num_heads
|
||||
self.num_head_channels = num_head_channels
|
||||
self.num_heads_upsample = num_heads_upsample
|
||||
|
@ -111,6 +121,24 @@ class ControlNet(nn.Module):
|
|||
linear(time_embed_dim, time_embed_dim),
|
||||
)
|
||||
|
||||
if self.num_classes is not None:
|
||||
if isinstance(self.num_classes, int):
|
||||
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
||||
elif self.num_classes == "continuous":
|
||||
print("setting up linear c_adm embedding layer")
|
||||
self.label_emb = nn.Linear(1, time_embed_dim)
|
||||
elif self.num_classes == "sequential":
|
||||
assert adm_in_channels is not None
|
||||
self.label_emb = nn.Sequential(
|
||||
nn.Sequential(
|
||||
linear(adm_in_channels, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, time_embed_dim),
|
||||
)
|
||||
)
|
||||
else:
|
||||
raise ValueError()
|
||||
|
||||
self.input_blocks = nn.ModuleList(
|
||||
[
|
||||
TimestepEmbedSequential(
|
||||
|
@ -179,7 +207,7 @@ class ControlNet(nn.Module):
|
|||
num_head_channels=dim_head,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
) if not use_spatial_transformer else SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
||||
ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint
|
||||
)
|
||||
|
@ -238,7 +266,7 @@ class ControlNet(nn.Module):
|
|||
num_head_channels=dim_head,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
|
||||
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
||||
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
||||
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint
|
||||
),
|
||||
|
@ -257,7 +285,7 @@ class ControlNet(nn.Module):
|
|||
def make_zero_conv(self, channels):
|
||||
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
|
||||
|
||||
def forward(self, x, hint, timesteps, context, **kwargs):
|
||||
def forward(self, x, hint, timesteps, context, y=None, **kwargs):
|
||||
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
||||
emb = self.time_embed(t_emb)
|
||||
|
||||
|
@ -265,6 +293,14 @@ class ControlNet(nn.Module):
|
|||
|
||||
outs = []
|
||||
|
||||
hs = []
|
||||
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
||||
emb = self.time_embed(t_emb)
|
||||
|
||||
if self.num_classes is not None:
|
||||
assert y.shape[0] == x.shape[0]
|
||||
emb = emb + self.label_emb(y)
|
||||
|
||||
h = x.type(self.dtype)
|
||||
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
|
||||
if guided_hint is not None:
|
||||
|
|
|
@ -0,0 +1,23 @@
|
|||
{
|
||||
"architectures": [
|
||||
"CLIPTextModel"
|
||||
],
|
||||
"attention_dropout": 0.0,
|
||||
"bos_token_id": 0,
|
||||
"dropout": 0.0,
|
||||
"eos_token_id": 2,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_size": 1280,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 5120,
|
||||
"layer_norm_eps": 1e-05,
|
||||
"max_position_embeddings": 77,
|
||||
"model_type": "clip_text_model",
|
||||
"num_attention_heads": 20,
|
||||
"num_hidden_layers": 32,
|
||||
"pad_token_id": 1,
|
||||
"projection_dim": 512,
|
||||
"torch_dtype": "float32",
|
||||
"vocab_size": 49408
|
||||
}
|
|
@ -29,31 +29,31 @@ class ClipVisionModel():
|
|||
outputs = self.model(**inputs)
|
||||
return outputs
|
||||
|
||||
def convert_to_transformers(sd):
|
||||
def convert_to_transformers(sd, prefix):
|
||||
sd_k = sd.keys()
|
||||
if "embedder.model.visual.transformer.resblocks.0.attn.in_proj_weight" in sd_k:
|
||||
if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k:
|
||||
keys_to_replace = {
|
||||
"embedder.model.visual.class_embedding": "vision_model.embeddings.class_embedding",
|
||||
"embedder.model.visual.conv1.weight": "vision_model.embeddings.patch_embedding.weight",
|
||||
"embedder.model.visual.positional_embedding": "vision_model.embeddings.position_embedding.weight",
|
||||
"embedder.model.visual.ln_post.bias": "vision_model.post_layernorm.bias",
|
||||
"embedder.model.visual.ln_post.weight": "vision_model.post_layernorm.weight",
|
||||
"embedder.model.visual.ln_pre.bias": "vision_model.pre_layrnorm.bias",
|
||||
"embedder.model.visual.ln_pre.weight": "vision_model.pre_layrnorm.weight",
|
||||
"{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding",
|
||||
"{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight",
|
||||
"{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight",
|
||||
"{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias",
|
||||
"{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight",
|
||||
"{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias",
|
||||
"{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight",
|
||||
}
|
||||
|
||||
for x in keys_to_replace:
|
||||
if x in sd_k:
|
||||
sd[keys_to_replace[x]] = sd.pop(x)
|
||||
|
||||
if "embedder.model.visual.proj" in sd_k:
|
||||
sd['visual_projection.weight'] = sd.pop("embedder.model.visual.proj").transpose(0, 1)
|
||||
if "{}proj".format(prefix) in sd_k:
|
||||
sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1)
|
||||
|
||||
sd = transformers_convert(sd, "embedder.model.visual", "vision_model", 32)
|
||||
sd = transformers_convert(sd, prefix, "vision_model.", 32)
|
||||
return sd
|
||||
|
||||
def load_clipvision_from_sd(sd):
|
||||
sd = convert_to_transformers(sd)
|
||||
def load_clipvision_from_sd(sd, prefix):
|
||||
sd = convert_to_transformers(sd, prefix)
|
||||
if "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
|
||||
else:
|
||||
|
|
|
@ -600,7 +600,7 @@ class SpatialTransformer(nn.Module):
|
|||
use_checkpoint=True, dtype=None):
|
||||
super().__init__()
|
||||
if exists(context_dim) and not isinstance(context_dim, list):
|
||||
context_dim = [context_dim]
|
||||
context_dim = [context_dim] * depth
|
||||
self.in_channels = in_channels
|
||||
inner_dim = n_heads * d_head
|
||||
self.norm = Normalize(in_channels, dtype=dtype)
|
||||
|
@ -630,7 +630,7 @@ class SpatialTransformer(nn.Module):
|
|||
def forward(self, x, context=None, transformer_options={}):
|
||||
# note: if no context is given, cross-attention defaults to self-attention
|
||||
if not isinstance(context, list):
|
||||
context = [context]
|
||||
context = [context] * len(self.transformer_blocks)
|
||||
b, c, h, w = x.shape
|
||||
x_in = x
|
||||
x = self.norm(x)
|
||||
|
|
|
@ -502,6 +502,7 @@ class UNetModel(nn.Module):
|
|||
disable_middle_self_attn=False,
|
||||
use_linear_in_transformer=False,
|
||||
adm_in_channels=None,
|
||||
transformer_depth_middle=None,
|
||||
):
|
||||
super().__init__()
|
||||
if use_spatial_transformer:
|
||||
|
@ -526,6 +527,10 @@ class UNetModel(nn.Module):
|
|||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
self.out_channels = out_channels
|
||||
if isinstance(transformer_depth, int):
|
||||
transformer_depth = len(channel_mult) * [transformer_depth]
|
||||
if transformer_depth_middle is None:
|
||||
transformer_depth_middle = transformer_depth[-1]
|
||||
if isinstance(num_res_blocks, int):
|
||||
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
||||
else:
|
||||
|
@ -631,7 +636,7 @@ class UNetModel(nn.Module):
|
|||
num_head_channels=dim_head,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
) if not use_spatial_transformer else SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
||||
ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype
|
||||
)
|
||||
|
@ -690,7 +695,7 @@ class UNetModel(nn.Module):
|
|||
num_head_channels=dim_head,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
|
||||
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
||||
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
||||
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype
|
||||
),
|
||||
|
@ -746,7 +751,7 @@ class UNetModel(nn.Module):
|
|||
num_head_channels=dim_head,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
) if not use_spatial_transformer else SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
||||
ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype
|
||||
)
|
||||
|
|
|
@ -2,6 +2,7 @@ import torch
|
|||
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel
|
||||
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
|
||||
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
|
||||
from comfy.ldm.modules.diffusionmodules.openaimodel import Timestep
|
||||
import numpy as np
|
||||
|
||||
class BaseModel(torch.nn.Module):
|
||||
|
@ -15,9 +16,9 @@ class BaseModel(torch.nn.Module):
|
|||
self.parameterization = "v"
|
||||
else:
|
||||
self.parameterization = "eps"
|
||||
if "adm_in_channels" in unet_config:
|
||||
self.adm_channels = unet_config["adm_in_channels"]
|
||||
else:
|
||||
|
||||
self.adm_channels = unet_config.get("adm_in_channels", None)
|
||||
if self.adm_channels is None:
|
||||
self.adm_channels = 0
|
||||
print("v_prediction", v_prediction)
|
||||
print("adm", self.adm_channels)
|
||||
|
@ -55,6 +56,25 @@ class BaseModel(torch.nn.Module):
|
|||
def is_adm(self):
|
||||
return self.adm_channels > 0
|
||||
|
||||
def encode_adm(self, **kwargs):
|
||||
return None
|
||||
|
||||
def load_model_weights(self, sd, unet_prefix=""):
|
||||
to_load = {}
|
||||
keys = list(sd.keys())
|
||||
for k in keys:
|
||||
if k.startswith(unet_prefix):
|
||||
to_load[k[len(unet_prefix):]] = sd.pop(k)
|
||||
|
||||
m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
|
||||
if len(m) > 0:
|
||||
print("unet missing:", m)
|
||||
|
||||
if len(u) > 0:
|
||||
print("unet unexpected:", u)
|
||||
del to_load
|
||||
return self
|
||||
|
||||
class SD21UNCLIP(BaseModel):
|
||||
def __init__(self, unet_config, noise_aug_config, v_prediction=True):
|
||||
super().__init__(unet_config, v_prediction)
|
||||
|
@ -95,3 +115,55 @@ class SDInpaint(BaseModel):
|
|||
def __init__(self, unet_config, v_prediction=False):
|
||||
super().__init__(unet_config, v_prediction)
|
||||
self.concat_keys = ("mask", "masked_image")
|
||||
|
||||
class SDXLRefiner(BaseModel):
|
||||
def __init__(self, unet_config, v_prediction=False):
|
||||
super().__init__(unet_config, v_prediction)
|
||||
self.embedder = Timestep(256)
|
||||
|
||||
def encode_adm(self, **kwargs):
|
||||
clip_pooled = kwargs["pooled_output"]
|
||||
width = kwargs.get("width", 768)
|
||||
height = kwargs.get("height", 768)
|
||||
crop_w = kwargs.get("crop_w", 0)
|
||||
crop_h = kwargs.get("crop_h", 0)
|
||||
|
||||
if kwargs.get("prompt_type", "") == "negative":
|
||||
aesthetic_score = kwargs.get("aesthetic_score", 2.5)
|
||||
else:
|
||||
aesthetic_score = kwargs.get("aesthetic_score", 6)
|
||||
|
||||
print(clip_pooled.shape, width, height, crop_w, crop_h, aesthetic_score)
|
||||
out = []
|
||||
out.append(self.embedder(torch.Tensor([width])))
|
||||
out.append(self.embedder(torch.Tensor([height])))
|
||||
out.append(self.embedder(torch.Tensor([crop_w])))
|
||||
out.append(self.embedder(torch.Tensor([crop_h])))
|
||||
out.append(self.embedder(torch.Tensor([aesthetic_score])))
|
||||
flat = torch.flatten(torch.cat(out))[None, ]
|
||||
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
|
||||
|
||||
class SDXL(BaseModel):
|
||||
def __init__(self, unet_config, v_prediction=False):
|
||||
super().__init__(unet_config, v_prediction)
|
||||
self.embedder = Timestep(256)
|
||||
|
||||
def encode_adm(self, **kwargs):
|
||||
clip_pooled = kwargs["pooled_output"]
|
||||
width = kwargs.get("width", 768)
|
||||
height = kwargs.get("height", 768)
|
||||
crop_w = kwargs.get("crop_w", 0)
|
||||
crop_h = kwargs.get("crop_h", 0)
|
||||
target_width = kwargs.get("target_width", width)
|
||||
target_height = kwargs.get("target_height", height)
|
||||
|
||||
print(clip_pooled.shape, width, height, crop_w, crop_h, target_width, target_height)
|
||||
out = []
|
||||
out.append(self.embedder(torch.Tensor([width])))
|
||||
out.append(self.embedder(torch.Tensor([height])))
|
||||
out.append(self.embedder(torch.Tensor([crop_w])))
|
||||
out.append(self.embedder(torch.Tensor([crop_h])))
|
||||
out.append(self.embedder(torch.Tensor([target_width])))
|
||||
out.append(self.embedder(torch.Tensor([target_height])))
|
||||
flat = torch.flatten(torch.cat(out))[None, ]
|
||||
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
|
||||
|
|
|
@ -0,0 +1,120 @@
|
|||
|
||||
from . import supported_models
|
||||
|
||||
def count_blocks(state_dict_keys, prefix_string):
|
||||
count = 0
|
||||
while True:
|
||||
c = False
|
||||
for k in state_dict_keys:
|
||||
if k.startswith(prefix_string.format(count)):
|
||||
c = True
|
||||
break
|
||||
if c == False:
|
||||
break
|
||||
count += 1
|
||||
return count
|
||||
|
||||
def detect_unet_config(state_dict, key_prefix, use_fp16):
|
||||
state_dict_keys = list(state_dict.keys())
|
||||
num_res_blocks = 2
|
||||
|
||||
unet_config = {
|
||||
"use_checkpoint": False,
|
||||
"image_size": 32,
|
||||
"out_channels": 4,
|
||||
"num_res_blocks": num_res_blocks,
|
||||
"use_spatial_transformer": True,
|
||||
"legacy": False
|
||||
}
|
||||
|
||||
y_input = '{}label_emb.0.0.weight'.format(key_prefix)
|
||||
if y_input in state_dict_keys:
|
||||
unet_config["num_classes"] = "sequential"
|
||||
unet_config["adm_in_channels"] = state_dict[y_input].shape[1]
|
||||
else:
|
||||
unet_config["adm_in_channels"] = None
|
||||
|
||||
unet_config["use_fp16"] = use_fp16
|
||||
model_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[0]
|
||||
in_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[1]
|
||||
|
||||
num_res_blocks = []
|
||||
channel_mult = []
|
||||
attention_resolutions = []
|
||||
transformer_depth = []
|
||||
context_dim = None
|
||||
use_linear_in_transformer = False
|
||||
|
||||
|
||||
current_res = 1
|
||||
count = 0
|
||||
|
||||
last_res_blocks = 0
|
||||
last_transformer_depth = 0
|
||||
last_channel_mult = 0
|
||||
|
||||
while True:
|
||||
prefix = '{}input_blocks.{}.'.format(key_prefix, count)
|
||||
block_keys = sorted(list(filter(lambda a: a.startswith(prefix), state_dict_keys)))
|
||||
if len(block_keys) == 0:
|
||||
break
|
||||
|
||||
if "{}0.op.weight".format(prefix) in block_keys: #new layer
|
||||
if last_transformer_depth > 0:
|
||||
attention_resolutions.append(current_res)
|
||||
transformer_depth.append(last_transformer_depth)
|
||||
num_res_blocks.append(last_res_blocks)
|
||||
channel_mult.append(last_channel_mult)
|
||||
|
||||
current_res *= 2
|
||||
last_res_blocks = 0
|
||||
last_transformer_depth = 0
|
||||
last_channel_mult = 0
|
||||
else:
|
||||
res_block_prefix = "{}0.in_layers.0.weight".format(prefix)
|
||||
if res_block_prefix in block_keys:
|
||||
last_res_blocks += 1
|
||||
last_channel_mult = state_dict["{}0.out_layers.3.weight".format(prefix)].shape[0] // model_channels
|
||||
|
||||
transformer_prefix = prefix + "1.transformer_blocks."
|
||||
transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys)))
|
||||
if len(transformer_keys) > 0:
|
||||
last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}')
|
||||
if context_dim is None:
|
||||
context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1]
|
||||
use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2
|
||||
|
||||
count += 1
|
||||
|
||||
if last_transformer_depth > 0:
|
||||
attention_resolutions.append(current_res)
|
||||
transformer_depth.append(last_transformer_depth)
|
||||
num_res_blocks.append(last_res_blocks)
|
||||
channel_mult.append(last_channel_mult)
|
||||
transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}')
|
||||
|
||||
if len(set(num_res_blocks)) == 1:
|
||||
num_res_blocks = num_res_blocks[0]
|
||||
|
||||
if len(set(transformer_depth)) == 1:
|
||||
transformer_depth = transformer_depth[0]
|
||||
|
||||
unet_config["in_channels"] = in_channels
|
||||
unet_config["model_channels"] = model_channels
|
||||
unet_config["num_res_blocks"] = num_res_blocks
|
||||
unet_config["attention_resolutions"] = attention_resolutions
|
||||
unet_config["transformer_depth"] = transformer_depth
|
||||
unet_config["channel_mult"] = channel_mult
|
||||
unet_config["transformer_depth_middle"] = transformer_depth_middle
|
||||
unet_config['use_linear_in_transformer'] = use_linear_in_transformer
|
||||
unet_config["context_dim"] = context_dim
|
||||
return unet_config
|
||||
|
||||
|
||||
def model_config_from_unet(state_dict, unet_key_prefix, use_fp16):
|
||||
unet_config = detect_unet_config(state_dict, unet_key_prefix, use_fp16)
|
||||
for model_config in supported_models.models:
|
||||
if model_config.matches(unet_config):
|
||||
return model_config(unet_config)
|
||||
|
||||
return None
|
|
@ -229,7 +229,7 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
|
|||
timestep_ = torch.cat([timestep] * batch_chunks)
|
||||
|
||||
if control is not None:
|
||||
c['control'] = control.get_control(input_x, timestep_, c['c_crossattn'], len(cond_or_uncond))
|
||||
c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))
|
||||
|
||||
transformer_options = {}
|
||||
if 'transformer_options' in model_options:
|
||||
|
@ -460,8 +460,7 @@ def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
|
|||
n[name] = uncond_fill_func(cond_cnets, x)
|
||||
uncond[temp[1]] = [o[0], n]
|
||||
|
||||
|
||||
def encode_adm(model, conds, batch_size, device):
|
||||
def encode_adm(model, conds, batch_size, width, height, device, prompt_type):
|
||||
for t in range(len(conds)):
|
||||
x = conds[t]
|
||||
adm_out = None
|
||||
|
@ -469,7 +468,11 @@ def encode_adm(model, conds, batch_size, device):
|
|||
adm_out = x[1]["adm"]
|
||||
else:
|
||||
params = x[1].copy()
|
||||
params["width"] = params.get("width", width * 8)
|
||||
params["height"] = params.get("height", height * 8)
|
||||
params["prompt_type"] = params.get("prompt_type", prompt_type)
|
||||
adm_out = model.encode_adm(device=device, **params)
|
||||
|
||||
if adm_out is not None:
|
||||
x[1] = x[1].copy()
|
||||
x[1]["adm_encoded"] = torch.cat([adm_out] * batch_size).to(device)
|
||||
|
@ -580,8 +583,8 @@ class KSampler:
|
|||
precision_scope = contextlib.nullcontext
|
||||
|
||||
if self.model.is_adm():
|
||||
positive = encode_adm(self.model, positive, noise.shape[0], self.device)
|
||||
negative = encode_adm(self.model, negative, noise.shape[0], self.device)
|
||||
positive = encode_adm(self.model, positive, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "positive")
|
||||
negative = encode_adm(self.model, negative, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "negative")
|
||||
|
||||
extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options}
|
||||
|
||||
|
|
364
comfy/sd.py
364
comfy/sd.py
|
@ -3,8 +3,6 @@ import contextlib
|
|||
import copy
|
||||
import inspect
|
||||
|
||||
from . import sd1_clip
|
||||
from . import sd2_clip
|
||||
from comfy import model_management
|
||||
from .ldm.util import instantiate_from_config
|
||||
from .ldm.models.autoencoder import AutoencoderKL
|
||||
|
@ -17,19 +15,28 @@ from . import clip_vision
|
|||
from . import gligen
|
||||
from . import diffusers_convert
|
||||
from . import model_base
|
||||
from . import model_detection
|
||||
|
||||
def load_model_weights(model, sd, verbose=False, load_state_dict_to=[]):
|
||||
replace_prefix = {"model.diffusion_model.": "diffusion_model."}
|
||||
for rp in replace_prefix:
|
||||
replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), sd.keys())))
|
||||
for x in replace:
|
||||
sd[x[1]] = sd.pop(x[0])
|
||||
from . import sd1_clip
|
||||
from . import sd2_clip
|
||||
|
||||
def load_model_weights(model, sd):
|
||||
m, u = model.load_state_dict(sd, strict=False)
|
||||
m = set(m)
|
||||
unexpected_keys = set(u)
|
||||
|
||||
k = list(sd.keys())
|
||||
for x in k:
|
||||
# print(x)
|
||||
if x not in unexpected_keys:
|
||||
w = sd.pop(x)
|
||||
del w
|
||||
if len(m) > 0:
|
||||
print("missing", m)
|
||||
return model
|
||||
|
||||
def load_clip_weights(model, sd):
|
||||
k = list(sd.keys())
|
||||
for x in k:
|
||||
if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
|
||||
y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
|
||||
sd[y] = sd.pop(x)
|
||||
|
@ -39,20 +46,8 @@ def load_model_weights(model, sd, verbose=False, load_state_dict_to=[]):
|
|||
if ids.dtype == torch.float32:
|
||||
sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
|
||||
|
||||
sd = utils.transformers_convert(sd, "cond_stage_model.model", "cond_stage_model.transformer.text_model", 24)
|
||||
|
||||
for x in load_state_dict_to:
|
||||
x.load_state_dict(sd, strict=False)
|
||||
|
||||
if len(m) > 0 and verbose:
|
||||
print("missing keys:")
|
||||
print(m)
|
||||
if len(u) > 0 and verbose:
|
||||
print("unexpected keys:")
|
||||
print(u)
|
||||
|
||||
model.eval()
|
||||
return model
|
||||
sd = utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
|
||||
return load_model_weights(model, sd)
|
||||
|
||||
LORA_CLIP_MAP = {
|
||||
"mlp.fc1": "mlp_fc1",
|
||||
|
@ -66,18 +61,26 @@ LORA_CLIP_MAP = {
|
|||
LORA_UNET_MAP_ATTENTIONS = {
|
||||
"proj_in": "proj_in",
|
||||
"proj_out": "proj_out",
|
||||
"transformer_blocks.0.attn1.to_q": "transformer_blocks_0_attn1_to_q",
|
||||
"transformer_blocks.0.attn1.to_k": "transformer_blocks_0_attn1_to_k",
|
||||
"transformer_blocks.0.attn1.to_v": "transformer_blocks_0_attn1_to_v",
|
||||
"transformer_blocks.0.attn1.to_out.0": "transformer_blocks_0_attn1_to_out_0",
|
||||
"transformer_blocks.0.attn2.to_q": "transformer_blocks_0_attn2_to_q",
|
||||
"transformer_blocks.0.attn2.to_k": "transformer_blocks_0_attn2_to_k",
|
||||
"transformer_blocks.0.attn2.to_v": "transformer_blocks_0_attn2_to_v",
|
||||
"transformer_blocks.0.attn2.to_out.0": "transformer_blocks_0_attn2_to_out_0",
|
||||
"transformer_blocks.0.ff.net.0.proj": "transformer_blocks_0_ff_net_0_proj",
|
||||
"transformer_blocks.0.ff.net.2": "transformer_blocks_0_ff_net_2",
|
||||
}
|
||||
|
||||
transformer_lora_blocks = {
|
||||
"transformer_blocks.{}.attn1.to_q": "transformer_blocks_{}_attn1_to_q",
|
||||
"transformer_blocks.{}.attn1.to_k": "transformer_blocks_{}_attn1_to_k",
|
||||
"transformer_blocks.{}.attn1.to_v": "transformer_blocks_{}_attn1_to_v",
|
||||
"transformer_blocks.{}.attn1.to_out.0": "transformer_blocks_{}_attn1_to_out_0",
|
||||
"transformer_blocks.{}.attn2.to_q": "transformer_blocks_{}_attn2_to_q",
|
||||
"transformer_blocks.{}.attn2.to_k": "transformer_blocks_{}_attn2_to_k",
|
||||
"transformer_blocks.{}.attn2.to_v": "transformer_blocks_{}_attn2_to_v",
|
||||
"transformer_blocks.{}.attn2.to_out.0": "transformer_blocks_{}_attn2_to_out_0",
|
||||
"transformer_blocks.{}.ff.net.0.proj": "transformer_blocks_{}_ff_net_0_proj",
|
||||
"transformer_blocks.{}.ff.net.2": "transformer_blocks_{}_ff_net_2",
|
||||
}
|
||||
|
||||
for i in range(10):
|
||||
for k in transformer_lora_blocks:
|
||||
LORA_UNET_MAP_ATTENTIONS[k.format(i)] = transformer_lora_blocks[k].format(i)
|
||||
|
||||
|
||||
LORA_UNET_MAP_RESNET = {
|
||||
"in_layers.2": "resnets_{}_conv1",
|
||||
"emb_layers.1": "resnets_{}_time_emb_proj",
|
||||
|
@ -470,21 +473,12 @@ def load_lora_for_models(model, clip, lora_path, strength_model, strength_clip):
|
|||
|
||||
|
||||
class CLIP:
|
||||
def __init__(self, config={}, embedding_directory=None, no_init=False):
|
||||
def __init__(self, target=None, embedding_directory=None, no_init=False):
|
||||
if no_init:
|
||||
return
|
||||
self.target_clip = config["target"]
|
||||
if "params" in config:
|
||||
params = config["params"]
|
||||
else:
|
||||
params = {}
|
||||
|
||||
if self.target_clip.endswith("FrozenOpenCLIPEmbedder"):
|
||||
clip = sd2_clip.SD2ClipModel
|
||||
tokenizer = sd2_clip.SD2Tokenizer
|
||||
elif self.target_clip.endswith("FrozenCLIPEmbedder"):
|
||||
clip = sd1_clip.SD1ClipModel
|
||||
tokenizer = sd1_clip.SD1Tokenizer
|
||||
params = target.params
|
||||
clip = target.clip
|
||||
tokenizer = target.tokenizer
|
||||
|
||||
self.device = model_management.text_encoder_device()
|
||||
params["device"] = self.device
|
||||
|
@ -497,11 +491,11 @@ class CLIP:
|
|||
|
||||
def clone(self):
|
||||
n = CLIP(no_init=True)
|
||||
n.target_clip = self.target_clip
|
||||
n.patcher = self.patcher.clone()
|
||||
n.cond_stage_model = self.cond_stage_model
|
||||
n.tokenizer = self.tokenizer
|
||||
n.layer_idx = self.layer_idx
|
||||
n.device = self.device
|
||||
return n
|
||||
|
||||
def load_from_state_dict(self, sd):
|
||||
|
@ -521,21 +515,22 @@ class CLIP:
|
|||
self.cond_stage_model.clip_layer(self.layer_idx)
|
||||
try:
|
||||
self.patcher.patch_model()
|
||||
cond = self.cond_stage_model.encode_token_weights(tokens)
|
||||
cond, pooled = self.cond_stage_model.encode_token_weights(tokens)
|
||||
self.patcher.unpatch_model()
|
||||
except Exception as e:
|
||||
self.patcher.unpatch_model()
|
||||
raise e
|
||||
|
||||
cond_out = cond
|
||||
if return_pooled:
|
||||
eos_token_index = max(range(len(tokens[0])), key=tokens[0].__getitem__)
|
||||
pooled = cond[:, eos_token_index]
|
||||
return cond, pooled
|
||||
return cond
|
||||
return cond_out, pooled
|
||||
return cond_out
|
||||
|
||||
def encode(self, text):
|
||||
tokens = self.tokenize(text)
|
||||
return self.encode_from_tokens(tokens)
|
||||
|
||||
|
||||
class VAE:
|
||||
def __init__(self, ckpt_path=None, scale_factor=0.18215, device=None, config=None):
|
||||
if config is None:
|
||||
|
@ -668,10 +663,10 @@ class ControlNet:
|
|||
self.previous_controlnet = None
|
||||
self.global_average_pooling = global_average_pooling
|
||||
|
||||
def get_control(self, x_noisy, t, cond_txt, batched_number):
|
||||
def get_control(self, x_noisy, t, cond, batched_number):
|
||||
control_prev = None
|
||||
if self.previous_controlnet is not None:
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt, batched_number)
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
||||
|
||||
output_dtype = x_noisy.dtype
|
||||
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
|
||||
|
@ -689,7 +684,9 @@ class ControlNet:
|
|||
|
||||
with precision_scope(model_management.get_autocast_device(self.device)):
|
||||
self.control_model = model_management.load_if_low_vram(self.control_model)
|
||||
control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=cond_txt)
|
||||
context = torch.cat(cond['c_crossattn'], 1)
|
||||
y = cond.get('c_adm', None)
|
||||
control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=context, y=y)
|
||||
self.control_model = model_management.unload_if_low_vram(self.control_model)
|
||||
out = {'middle':[], 'output': []}
|
||||
autocast_enabled = torch.is_autocast_enabled()
|
||||
|
@ -749,60 +746,28 @@ class ControlNet:
|
|||
|
||||
def load_controlnet(ckpt_path, model=None):
|
||||
controlnet_data = utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
pth_key = 'control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'
|
||||
pth_key = 'control_model.zero_convs.0.0.weight'
|
||||
pth = False
|
||||
sd2 = False
|
||||
key = 'input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'
|
||||
key = 'zero_convs.0.0.weight'
|
||||
if pth_key in controlnet_data:
|
||||
pth = True
|
||||
key = pth_key
|
||||
prefix = "control_model."
|
||||
elif key in controlnet_data:
|
||||
pass
|
||||
prefix = ""
|
||||
else:
|
||||
net = load_t2i_adapter(controlnet_data)
|
||||
if net is None:
|
||||
print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
|
||||
return net
|
||||
|
||||
context_dim = controlnet_data[key].shape[1]
|
||||
use_fp16 = model_management.should_use_fp16()
|
||||
|
||||
use_fp16 = False
|
||||
if model_management.should_use_fp16() and controlnet_data[key].dtype == torch.float16:
|
||||
use_fp16 = True
|
||||
controlnet_config = model_detection.model_config_from_unet(controlnet_data, prefix, use_fp16).unet_config
|
||||
controlnet_config.pop("out_channels")
|
||||
controlnet_config["hint_channels"] = 3
|
||||
control_model = cldm.ControlNet(**controlnet_config)
|
||||
|
||||
if context_dim == 768:
|
||||
#SD1.x
|
||||
control_model = cldm.ControlNet(image_size=32,
|
||||
in_channels=4,
|
||||
hint_channels=3,
|
||||
model_channels=320,
|
||||
attention_resolutions=[ 4, 2, 1 ],
|
||||
num_res_blocks=2,
|
||||
channel_mult=[ 1, 2, 4, 4 ],
|
||||
num_heads=8,
|
||||
use_spatial_transformer=True,
|
||||
transformer_depth=1,
|
||||
context_dim=context_dim,
|
||||
use_checkpoint=False,
|
||||
legacy=False,
|
||||
use_fp16=use_fp16)
|
||||
else:
|
||||
#SD2.x
|
||||
control_model = cldm.ControlNet(image_size=32,
|
||||
in_channels=4,
|
||||
hint_channels=3,
|
||||
model_channels=320,
|
||||
attention_resolutions=[ 4, 2, 1 ],
|
||||
num_res_blocks=2,
|
||||
channel_mult=[ 1, 2, 4, 4 ],
|
||||
num_head_channels=64,
|
||||
use_spatial_transformer=True,
|
||||
use_linear_in_transformer=True,
|
||||
transformer_depth=1,
|
||||
context_dim=context_dim,
|
||||
use_checkpoint=False,
|
||||
legacy=False,
|
||||
use_fp16=use_fp16)
|
||||
if pth:
|
||||
if 'difference' in controlnet_data:
|
||||
if model is not None:
|
||||
|
@ -823,9 +788,10 @@ def load_controlnet(ckpt_path, model=None):
|
|||
pass
|
||||
w = WeightsLoader()
|
||||
w.control_model = control_model
|
||||
w.load_state_dict(controlnet_data, strict=False)
|
||||
missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
|
||||
else:
|
||||
control_model.load_state_dict(controlnet_data, strict=False)
|
||||
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
|
||||
print(missing, unexpected)
|
||||
|
||||
if use_fp16:
|
||||
control_model = control_model.half()
|
||||
|
@ -850,10 +816,10 @@ class T2IAdapter:
|
|||
self.cond_hint_original = None
|
||||
self.cond_hint = None
|
||||
|
||||
def get_control(self, x_noisy, t, cond_txt, batched_number):
|
||||
def get_control(self, x_noisy, t, cond, batched_number):
|
||||
control_prev = None
|
||||
if self.previous_controlnet is not None:
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt, batched_number)
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
||||
|
||||
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
|
||||
if self.cond_hint is not None:
|
||||
|
@ -929,12 +895,21 @@ class T2IAdapter:
|
|||
|
||||
def load_t2i_adapter(t2i_data):
|
||||
keys = t2i_data.keys()
|
||||
if 'adapter' in keys:
|
||||
t2i_data = t2i_data['adapter']
|
||||
keys = t2i_data.keys()
|
||||
if "body.0.in_conv.weight" in keys:
|
||||
cin = t2i_data['body.0.in_conv.weight'].shape[1]
|
||||
model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
|
||||
elif 'conv_in.weight' in keys:
|
||||
cin = t2i_data['conv_in.weight'].shape[1]
|
||||
model_ad = adapter.Adapter(cin=cin, channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False)
|
||||
channel = t2i_data['conv_in.weight'].shape[0]
|
||||
ksize = t2i_data['body.0.block2.weight'].shape[2]
|
||||
use_conv = False
|
||||
down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
|
||||
if len(down_opts) > 0:
|
||||
use_conv = True
|
||||
model_ad = adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv)
|
||||
else:
|
||||
return None
|
||||
model_ad.load_state_dict(t2i_data)
|
||||
|
@ -1010,17 +985,8 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
|
|||
class WeightsLoader(torch.nn.Module):
|
||||
pass
|
||||
|
||||
w = WeightsLoader()
|
||||
load_state_dict_to = []
|
||||
if output_vae:
|
||||
vae = VAE(scale_factor=scale_factor, config=vae_config)
|
||||
w.first_stage_model = vae.first_stage_model
|
||||
load_state_dict_to = [w]
|
||||
|
||||
if output_clip:
|
||||
clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
|
||||
w.cond_stage_model = clip.cond_stage_model
|
||||
load_state_dict_to = [w]
|
||||
if state_dict is None:
|
||||
state_dict = utils.load_torch_file(ckpt_path)
|
||||
|
||||
if config['model']["target"].endswith("LatentInpaintDiffusion"):
|
||||
model = model_base.SDInpaint(unet_config, v_prediction=v_prediction)
|
||||
|
@ -1029,13 +995,33 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
|
|||
else:
|
||||
model = model_base.BaseModel(unet_config, v_prediction=v_prediction)
|
||||
|
||||
if state_dict is None:
|
||||
state_dict = utils.load_torch_file(ckpt_path)
|
||||
model = load_model_weights(model, state_dict, verbose=False, load_state_dict_to=load_state_dict_to)
|
||||
|
||||
if fp16:
|
||||
model = model.half()
|
||||
|
||||
model.load_model_weights(state_dict, "model.diffusion_model.")
|
||||
|
||||
if output_vae:
|
||||
w = WeightsLoader()
|
||||
vae = VAE(scale_factor=scale_factor, config=vae_config)
|
||||
w.first_stage_model = vae.first_stage_model
|
||||
load_model_weights(w, state_dict)
|
||||
|
||||
if output_clip:
|
||||
w = WeightsLoader()
|
||||
class EmptyClass:
|
||||
pass
|
||||
clip_target = EmptyClass()
|
||||
clip_target.params = clip_config["params"]
|
||||
if clip_config["target"].endswith("FrozenOpenCLIPEmbedder"):
|
||||
clip_target.clip = sd2_clip.SD2ClipModel
|
||||
clip_target.tokenizer = sd2_clip.SD2Tokenizer
|
||||
elif clip_config["target"].endswith("FrozenCLIPEmbedder"):
|
||||
clip_target.clip = sd1_clip.SD1ClipModel
|
||||
clip_target.tokenizer = sd1_clip.SD1Tokenizer
|
||||
clip = CLIP(clip_target, embedding_directory=embedding_directory)
|
||||
w.cond_stage_model = clip.cond_stage_model
|
||||
load_clip_weights(w, state_dict)
|
||||
|
||||
return (ModelPatcher(model), clip, vae)
|
||||
|
||||
|
||||
|
@ -1045,139 +1031,41 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
|||
clip = None
|
||||
clipvision = None
|
||||
vae = None
|
||||
model = None
|
||||
clip_target = None
|
||||
|
||||
fp16 = model_management.should_use_fp16()
|
||||
|
||||
class WeightsLoader(torch.nn.Module):
|
||||
pass
|
||||
|
||||
w = WeightsLoader()
|
||||
load_state_dict_to = []
|
||||
model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", fp16)
|
||||
if model_config is None:
|
||||
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
|
||||
|
||||
if model_config.clip_vision_prefix is not None:
|
||||
if output_clipvision:
|
||||
clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix)
|
||||
|
||||
model = model_config.get_model(sd)
|
||||
model.load_model_weights(sd, "model.diffusion_model.")
|
||||
|
||||
if output_vae:
|
||||
vae = VAE()
|
||||
vae = VAE(scale_factor=model_config.vae_scale_factor)
|
||||
w = WeightsLoader()
|
||||
w.first_stage_model = vae.first_stage_model
|
||||
load_state_dict_to = [w]
|
||||
load_model_weights(w, sd)
|
||||
|
||||
if output_clip:
|
||||
clip_config = {}
|
||||
if "cond_stage_model.model.transformer.resblocks.22.attn.out_proj.weight" in sd_keys:
|
||||
clip_config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
|
||||
else:
|
||||
clip_config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenCLIPEmbedder'
|
||||
clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
|
||||
w = WeightsLoader()
|
||||
clip_target = model_config.clip_target()
|
||||
clip = CLIP(clip_target, embedding_directory=embedding_directory)
|
||||
w.cond_stage_model = clip.cond_stage_model
|
||||
load_state_dict_to = [w]
|
||||
sd = model_config.process_clip_state_dict(sd)
|
||||
load_model_weights(w, sd)
|
||||
|
||||
clipvision_key = "embedder.model.visual.transformer.resblocks.0.attn.in_proj_weight"
|
||||
noise_aug_config = None
|
||||
if clipvision_key in sd_keys:
|
||||
size = sd[clipvision_key].shape[1]
|
||||
|
||||
if output_clipvision:
|
||||
clipvision = clip_vision.load_clipvision_from_sd(sd)
|
||||
|
||||
noise_aug_key = "noise_augmentor.betas"
|
||||
if noise_aug_key in sd_keys:
|
||||
noise_aug_config = {}
|
||||
params = {}
|
||||
noise_schedule_config = {}
|
||||
noise_schedule_config["timesteps"] = sd[noise_aug_key].shape[0]
|
||||
noise_schedule_config["beta_schedule"] = "squaredcos_cap_v2"
|
||||
params["noise_schedule_config"] = noise_schedule_config
|
||||
noise_aug_config['target'] = "comfy.ldm.modules.encoders.noise_aug_modules.CLIPEmbeddingNoiseAugmentation"
|
||||
if size == 1280: #h
|
||||
params["timestep_dim"] = 1024
|
||||
elif size == 1024: #l
|
||||
params["timestep_dim"] = 768
|
||||
noise_aug_config['params'] = params
|
||||
|
||||
sd_config = {
|
||||
"linear_start": 0.00085,
|
||||
"linear_end": 0.012,
|
||||
"num_timesteps_cond": 1,
|
||||
"log_every_t": 200,
|
||||
"timesteps": 1000,
|
||||
"first_stage_key": "jpg",
|
||||
"cond_stage_key": "txt",
|
||||
"image_size": 64,
|
||||
"channels": 4,
|
||||
"cond_stage_trainable": False,
|
||||
"monitor": "val/loss_simple_ema",
|
||||
"scale_factor": 0.18215,
|
||||
"use_ema": False,
|
||||
}
|
||||
|
||||
unet_config = {
|
||||
"use_checkpoint": False,
|
||||
"image_size": 32,
|
||||
"out_channels": 4,
|
||||
"attention_resolutions": [
|
||||
4,
|
||||
2,
|
||||
1
|
||||
],
|
||||
"num_res_blocks": 2,
|
||||
"channel_mult": [
|
||||
1,
|
||||
2,
|
||||
4,
|
||||
4
|
||||
],
|
||||
"use_spatial_transformer": True,
|
||||
"transformer_depth": 1,
|
||||
"legacy": False
|
||||
}
|
||||
|
||||
if len(sd['model.diffusion_model.input_blocks.4.1.proj_in.weight'].shape) == 2:
|
||||
unet_config['use_linear_in_transformer'] = True
|
||||
|
||||
unet_config["use_fp16"] = fp16
|
||||
unet_config["model_channels"] = sd['model.diffusion_model.input_blocks.0.0.weight'].shape[0]
|
||||
unet_config["in_channels"] = sd['model.diffusion_model.input_blocks.0.0.weight'].shape[1]
|
||||
unet_config["context_dim"] = sd['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight'].shape[1]
|
||||
|
||||
sd_config["unet_config"] = {"target": "comfy.ldm.modules.diffusionmodules.openaimodel.UNetModel", "params": unet_config}
|
||||
|
||||
unclip_model = False
|
||||
inpaint_model = False
|
||||
if noise_aug_config is not None: #SD2.x unclip model
|
||||
sd_config["noise_aug_config"] = noise_aug_config
|
||||
sd_config["image_size"] = 96
|
||||
sd_config["embedding_dropout"] = 0.25
|
||||
sd_config["conditioning_key"] = 'crossattn-adm'
|
||||
unclip_model = True
|
||||
elif unet_config["in_channels"] > 4: #inpainting model
|
||||
sd_config["conditioning_key"] = "hybrid"
|
||||
sd_config["finetune_keys"] = None
|
||||
inpaint_model = True
|
||||
else:
|
||||
sd_config["conditioning_key"] = "crossattn"
|
||||
|
||||
if unet_config["context_dim"] == 768:
|
||||
unet_config["num_heads"] = 8 #SD1.x
|
||||
else:
|
||||
unet_config["num_head_channels"] = 64 #SD2.x
|
||||
|
||||
unclip = 'model.diffusion_model.label_emb.0.0.weight'
|
||||
if unclip in sd_keys:
|
||||
unet_config["num_classes"] = "sequential"
|
||||
unet_config["adm_in_channels"] = sd[unclip].shape[1]
|
||||
|
||||
v_prediction = False
|
||||
if unet_config["context_dim"] == 1024 and unet_config["in_channels"] == 4: #only SD2.x non inpainting models are v prediction
|
||||
k = "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias"
|
||||
out = sd[k]
|
||||
if torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out.
|
||||
v_prediction = True
|
||||
sd_config["parameterization"] = 'v'
|
||||
|
||||
if inpaint_model:
|
||||
model = model_base.SDInpaint(unet_config, v_prediction=v_prediction)
|
||||
elif unclip_model:
|
||||
model = model_base.SD21UNCLIP(unet_config, noise_aug_config["params"], v_prediction=v_prediction)
|
||||
else:
|
||||
model = model_base.BaseModel(unet_config, v_prediction=v_prediction)
|
||||
|
||||
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
|
||||
left_over = sd.keys()
|
||||
if len(left_over) > 0:
|
||||
print("left over keys:", left_over)
|
||||
|
||||
return (ModelPatcher(model), clip, vae, clipvision)
|
||||
|
|
|
@ -8,11 +8,14 @@ import zipfile
|
|||
|
||||
class ClipTokenWeightEncoder:
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
z_empty = self.encode(self.empty_tokens)
|
||||
z_empty, _ = self.encode(self.empty_tokens)
|
||||
output = []
|
||||
first_pooled = None
|
||||
for x in token_weight_pairs:
|
||||
tokens = [list(map(lambda a: a[0], x))]
|
||||
z = self.encode(tokens)
|
||||
z, pooled = self.encode(tokens)
|
||||
if first_pooled is None:
|
||||
first_pooled = pooled
|
||||
for i in range(len(z)):
|
||||
for j in range(len(z[i])):
|
||||
weight = x[j][1]
|
||||
|
@ -20,7 +23,7 @@ class ClipTokenWeightEncoder:
|
|||
output += [z]
|
||||
if (len(output) == 0):
|
||||
return self.encode(self.empty_tokens)
|
||||
return torch.cat(output, dim=-2).cpu()
|
||||
return torch.cat(output, dim=-2).cpu(), first_pooled.cpu()
|
||||
|
||||
class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
||||
|
@ -50,6 +53,8 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
|||
self.layer = layer
|
||||
self.layer_idx = None
|
||||
self.empty_tokens = [[49406] + [49407] * 76]
|
||||
self.text_projection = None
|
||||
self.layer_norm_hidden_state = True
|
||||
if layer == "hidden":
|
||||
assert layer_idx is not None
|
||||
assert abs(layer_idx) <= 12
|
||||
|
@ -112,9 +117,13 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
|||
z = outputs.pooler_output[:, None, :]
|
||||
else:
|
||||
z = outputs.hidden_states[self.layer_idx]
|
||||
z = self.transformer.text_model.final_layer_norm(z)
|
||||
if self.layer_norm_hidden_state:
|
||||
z = self.transformer.text_model.final_layer_norm(z)
|
||||
|
||||
return z
|
||||
pooled_output = outputs.pooler_output
|
||||
if self.text_projection is not None:
|
||||
pooled_output = pooled_output @ self.text_projection
|
||||
return z, pooled_output
|
||||
|
||||
def encode(self, tokens):
|
||||
return self(tokens)
|
||||
|
@ -204,7 +213,7 @@ def expand_directory_list(directories):
|
|||
dirs.add(root)
|
||||
return list(dirs)
|
||||
|
||||
def load_embed(embedding_name, embedding_directory):
|
||||
def load_embed(embedding_name, embedding_directory, embedding_size):
|
||||
if isinstance(embedding_directory, str):
|
||||
embedding_directory = [embedding_directory]
|
||||
|
||||
|
@ -253,13 +262,23 @@ def load_embed(embedding_name, embedding_directory):
|
|||
if embed_out is None:
|
||||
if 'string_to_param' in embed:
|
||||
values = embed['string_to_param'].values()
|
||||
embed_out = next(iter(values))
|
||||
elif isinstance(embed, list):
|
||||
out_list = []
|
||||
for x in range(len(embed)):
|
||||
for k in embed[x]:
|
||||
t = embed[x][k]
|
||||
if t.shape[-1] != embedding_size:
|
||||
continue
|
||||
out_list.append(t.reshape(-1, t.shape[-1]))
|
||||
embed_out = torch.cat(out_list, dim=0)
|
||||
else:
|
||||
values = embed.values()
|
||||
embed_out = next(iter(values))
|
||||
embed_out = next(iter(values))
|
||||
return embed_out
|
||||
|
||||
class SD1Tokenizer:
|
||||
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None):
|
||||
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768):
|
||||
if tokenizer_path is None:
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
|
||||
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path)
|
||||
|
@ -275,17 +294,18 @@ class SD1Tokenizer:
|
|||
self.embedding_directory = embedding_directory
|
||||
self.max_word_length = 8
|
||||
self.embedding_identifier = "embedding:"
|
||||
self.embedding_size = embedding_size
|
||||
|
||||
def _try_get_embedding(self, embedding_name:str):
|
||||
'''
|
||||
Takes a potential embedding name and tries to retrieve it.
|
||||
Returns a Tuple consisting of the embedding and any leftover string, embedding can be None.
|
||||
'''
|
||||
embed = load_embed(embedding_name, self.embedding_directory)
|
||||
embed = load_embed(embedding_name, self.embedding_directory, self.embedding_size)
|
||||
if embed is None:
|
||||
stripped = embedding_name.strip(',')
|
||||
if len(stripped) < len(embedding_name):
|
||||
embed = load_embed(stripped, self.embedding_directory)
|
||||
embed = load_embed(stripped, self.embedding_directory, self.embedding_size)
|
||||
return (embed, embedding_name[len(stripped):])
|
||||
return (embed, "")
|
||||
|
||||
|
|
|
@ -31,4 +31,4 @@ class SD2ClipModel(sd1_clip.SD1ClipModel):
|
|||
|
||||
class SD2Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, tokenizer_path=None, embedding_directory=None):
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory)
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1024)
|
||||
|
|
|
@ -0,0 +1,83 @@
|
|||
from comfy import sd1_clip
|
||||
import torch
|
||||
import os
|
||||
|
||||
class SDXLClipG(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
|
||||
super().__init__(device=device, freeze=freeze, textmodel_json_config=textmodel_json_config)
|
||||
self.empty_tokens = [[49406] + [49407] + [0] * 75]
|
||||
self.text_projection = torch.nn.Parameter(torch.empty(1280, 1280))
|
||||
self.layer_norm_hidden_state = False
|
||||
if layer == "last":
|
||||
pass
|
||||
elif layer == "penultimate":
|
||||
layer_idx = -1
|
||||
self.clip_layer(layer_idx)
|
||||
elif self.layer == "hidden":
|
||||
assert layer_idx is not None
|
||||
assert abs(layer_idx) < 32
|
||||
self.clip_layer(layer_idx)
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
def clip_layer(self, layer_idx):
|
||||
if layer_idx < 0:
|
||||
layer_idx -= 1 #The real last layer of SD2.x clip is the penultimate one. The last one might contain garbage.
|
||||
if abs(layer_idx) >= 32:
|
||||
self.layer = "hidden"
|
||||
self.layer_idx = -2
|
||||
else:
|
||||
self.layer = "hidden"
|
||||
self.layer_idx = layer_idx
|
||||
|
||||
class SDXLClipGTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, tokenizer_path=None, embedding_directory=None):
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280)
|
||||
|
||||
|
||||
class SDXLTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None):
|
||||
self.clip_l = sd1_clip.SD1Tokenizer(embedding_directory=embedding_directory)
|
||||
self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory)
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False):
|
||||
out = {}
|
||||
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
|
||||
return out
|
||||
|
||||
def untokenize(self, token_weight_pair):
|
||||
return self.clip_g.untokenize(token_weight_pair)
|
||||
|
||||
class SDXLClipModel(torch.nn.Module):
|
||||
def __init__(self, device="cpu"):
|
||||
super().__init__()
|
||||
self.clip_l = sd1_clip.SD1ClipModel(layer="hidden", layer_idx=11, device=device)
|
||||
self.clip_l.layer_norm_hidden_state = False
|
||||
self.clip_g = SDXLClipG(device=device)
|
||||
|
||||
def clip_layer(self, layer_idx):
|
||||
self.clip_l.clip_layer(layer_idx)
|
||||
self.clip_g.clip_layer(layer_idx)
|
||||
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
token_weight_pairs_g = token_weight_pairs["g"]
|
||||
token_weight_pairs_l = token_weight_pairs["l"]
|
||||
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
|
||||
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
|
||||
return torch.cat([l_out, g_out], dim=-1), g_pooled
|
||||
|
||||
class SDXLRefinerClipModel(torch.nn.Module):
|
||||
def __init__(self, device="cpu"):
|
||||
super().__init__()
|
||||
self.clip_g = SDXLClipG(device=device)
|
||||
|
||||
def clip_layer(self, layer_idx):
|
||||
self.clip_g.clip_layer(layer_idx)
|
||||
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
token_weight_pairs_g = token_weight_pairs["g"]
|
||||
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
|
||||
return g_out, g_pooled
|
||||
|
|
@ -0,0 +1,148 @@
|
|||
import torch
|
||||
from . import model_base
|
||||
from . import utils
|
||||
|
||||
from . import sd1_clip
|
||||
from . import sd2_clip
|
||||
from . import sdxl_clip
|
||||
|
||||
from . import supported_models_base
|
||||
|
||||
class SD15(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"context_dim": 768,
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": False,
|
||||
"adm_in_channels": None,
|
||||
}
|
||||
|
||||
unet_extra_config = {
|
||||
"num_heads": 8,
|
||||
"num_head_channels": -1,
|
||||
}
|
||||
|
||||
vae_scale_factor = 0.18215
|
||||
|
||||
def process_clip_state_dict(self, state_dict):
|
||||
k = list(state_dict.keys())
|
||||
for x in k:
|
||||
if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
|
||||
y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
|
||||
state_dict[y] = state_dict.pop(x)
|
||||
|
||||
if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in state_dict:
|
||||
ids = state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids']
|
||||
if ids.dtype == torch.float32:
|
||||
state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
|
||||
|
||||
return state_dict
|
||||
|
||||
def clip_target(self):
|
||||
return supported_models_base.ClipTarget(sd1_clip.SD1Tokenizer, sd1_clip.SD1ClipModel)
|
||||
|
||||
class SD20(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"context_dim": 1024,
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": True,
|
||||
"adm_in_channels": None,
|
||||
}
|
||||
|
||||
vae_scale_factor = 0.18215
|
||||
|
||||
def v_prediction(self, state_dict):
|
||||
if self.unet_config["in_channels"] == 4: #SD2.0 inpainting models are not v prediction
|
||||
k = "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias"
|
||||
out = state_dict[k]
|
||||
if torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out.
|
||||
return True
|
||||
return False
|
||||
|
||||
def process_clip_state_dict(self, state_dict):
|
||||
state_dict = utils.transformers_convert(state_dict, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
|
||||
return state_dict
|
||||
|
||||
def clip_target(self):
|
||||
return supported_models_base.ClipTarget(sd2_clip.SD2Tokenizer, sd2_clip.SD2ClipModel)
|
||||
|
||||
class SD21UnclipL(SD20):
|
||||
unet_config = {
|
||||
"context_dim": 1024,
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": True,
|
||||
"adm_in_channels": 1536,
|
||||
}
|
||||
|
||||
clip_vision_prefix = "embedder.model.visual."
|
||||
noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 768}
|
||||
|
||||
|
||||
class SD21UnclipH(SD20):
|
||||
unet_config = {
|
||||
"context_dim": 1024,
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": True,
|
||||
"adm_in_channels": 2048,
|
||||
}
|
||||
|
||||
clip_vision_prefix = "embedder.model.visual."
|
||||
noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1024}
|
||||
|
||||
class SDXLRefiner(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"model_channels": 384,
|
||||
"use_linear_in_transformer": True,
|
||||
"context_dim": 1280,
|
||||
"adm_in_channels": 2560,
|
||||
"transformer_depth": [0, 4, 4, 0],
|
||||
}
|
||||
|
||||
vae_scale_factor = 0.13025
|
||||
|
||||
def get_model(self, state_dict):
|
||||
return model_base.SDXLRefiner(self.unet_config)
|
||||
|
||||
def process_clip_state_dict(self, state_dict):
|
||||
keys_to_replace = {}
|
||||
replace_prefix = {}
|
||||
|
||||
state_dict = utils.transformers_convert(state_dict, "conditioner.embedders.0.model.", "cond_stage_model.clip_g.transformer.text_model.", 32)
|
||||
keys_to_replace["conditioner.embedders.0.model.text_projection"] = "cond_stage_model.clip_g.text_projection"
|
||||
|
||||
state_dict = supported_models_base.state_dict_key_replace(state_dict, keys_to_replace)
|
||||
return state_dict
|
||||
|
||||
def clip_target(self):
|
||||
return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLRefinerClipModel)
|
||||
|
||||
class SDXL(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": True,
|
||||
"transformer_depth": [0, 2, 10],
|
||||
"context_dim": 2048,
|
||||
"adm_in_channels": 2816
|
||||
}
|
||||
|
||||
vae_scale_factor = 0.13025
|
||||
|
||||
def get_model(self, state_dict):
|
||||
return model_base.SDXL(self.unet_config)
|
||||
|
||||
def process_clip_state_dict(self, state_dict):
|
||||
keys_to_replace = {}
|
||||
replace_prefix = {}
|
||||
|
||||
replace_prefix["conditioner.embedders.0.transformer.text_model"] = "cond_stage_model.clip_l.transformer.text_model"
|
||||
state_dict = utils.transformers_convert(state_dict, "conditioner.embedders.1.model.", "cond_stage_model.clip_g.transformer.text_model.", 32)
|
||||
keys_to_replace["conditioner.embedders.1.model.text_projection"] = "cond_stage_model.clip_g.text_projection"
|
||||
|
||||
state_dict = supported_models_base.state_dict_prefix_replace(state_dict, replace_prefix)
|
||||
state_dict = supported_models_base.state_dict_key_replace(state_dict, keys_to_replace)
|
||||
return state_dict
|
||||
|
||||
def clip_target(self):
|
||||
return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLClipModel)
|
||||
|
||||
|
||||
models = [SD15, SD20, SD21UnclipL, SD21UnclipH, SDXLRefiner, SDXL]
|
|
@ -0,0 +1,65 @@
|
|||
import torch
|
||||
from . import model_base
|
||||
from . import utils
|
||||
|
||||
|
||||
def state_dict_key_replace(state_dict, keys_to_replace):
|
||||
for x in keys_to_replace:
|
||||
if x in state_dict:
|
||||
state_dict[keys_to_replace[x]] = state_dict.pop(x)
|
||||
return state_dict
|
||||
|
||||
def state_dict_prefix_replace(state_dict, replace_prefix):
|
||||
for rp in replace_prefix:
|
||||
replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), state_dict.keys())))
|
||||
for x in replace:
|
||||
state_dict[x[1]] = state_dict.pop(x[0])
|
||||
return state_dict
|
||||
|
||||
|
||||
class ClipTarget:
|
||||
def __init__(self, tokenizer, clip):
|
||||
self.clip = clip
|
||||
self.tokenizer = tokenizer
|
||||
self.params = {}
|
||||
|
||||
class BASE:
|
||||
unet_config = {}
|
||||
unet_extra_config = {
|
||||
"num_heads": -1,
|
||||
"num_head_channels": 64,
|
||||
}
|
||||
|
||||
clip_prefix = []
|
||||
clip_vision_prefix = None
|
||||
noise_aug_config = None
|
||||
|
||||
@classmethod
|
||||
def matches(s, unet_config):
|
||||
for k in s.unet_config:
|
||||
if s.unet_config[k] != unet_config[k]:
|
||||
return False
|
||||
return True
|
||||
|
||||
def v_prediction(self, state_dict):
|
||||
return False
|
||||
|
||||
def inpaint_model(self):
|
||||
return self.unet_config["in_channels"] > 4
|
||||
|
||||
def __init__(self, unet_config):
|
||||
self.unet_config = unet_config
|
||||
for x in self.unet_extra_config:
|
||||
self.unet_config[x] = self.unet_extra_config[x]
|
||||
|
||||
def get_model(self, state_dict):
|
||||
if self.inpaint_model():
|
||||
return model_base.SDInpaint(self.unet_config, v_prediction=self.v_prediction(state_dict))
|
||||
elif self.noise_aug_config is not None:
|
||||
return model_base.SD21UNCLIP(self.unet_config, self.noise_aug_config, v_prediction=self.v_prediction(state_dict))
|
||||
else:
|
||||
return model_base.BaseModel(self.unet_config, v_prediction=self.v_prediction(state_dict))
|
||||
|
||||
def process_clip_state_dict(self, state_dict):
|
||||
return state_dict
|
||||
|
|
@ -26,10 +26,10 @@ def load_torch_file(ckpt, safe_load=False):
|
|||
|
||||
def transformers_convert(sd, prefix_from, prefix_to, number):
|
||||
keys_to_replace = {
|
||||
"{}.positional_embedding": "{}.embeddings.position_embedding.weight",
|
||||
"{}.token_embedding.weight": "{}.embeddings.token_embedding.weight",
|
||||
"{}.ln_final.weight": "{}.final_layer_norm.weight",
|
||||
"{}.ln_final.bias": "{}.final_layer_norm.bias",
|
||||
"{}positional_embedding": "{}embeddings.position_embedding.weight",
|
||||
"{}token_embedding.weight": "{}embeddings.token_embedding.weight",
|
||||
"{}ln_final.weight": "{}final_layer_norm.weight",
|
||||
"{}ln_final.bias": "{}final_layer_norm.bias",
|
||||
}
|
||||
|
||||
for k in keys_to_replace:
|
||||
|
@ -48,19 +48,19 @@ def transformers_convert(sd, prefix_from, prefix_to, number):
|
|||
for resblock in range(number):
|
||||
for x in resblock_to_replace:
|
||||
for y in ["weight", "bias"]:
|
||||
k = "{}.transformer.resblocks.{}.{}.{}".format(prefix_from, resblock, x, y)
|
||||
k_to = "{}.encoder.layers.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y)
|
||||
k = "{}transformer.resblocks.{}.{}.{}".format(prefix_from, resblock, x, y)
|
||||
k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y)
|
||||
if k in sd:
|
||||
sd[k_to] = sd.pop(k)
|
||||
|
||||
for y in ["weight", "bias"]:
|
||||
k_from = "{}.transformer.resblocks.{}.attn.in_proj_{}".format(prefix_from, resblock, y)
|
||||
k_from = "{}transformer.resblocks.{}.attn.in_proj_{}".format(prefix_from, resblock, y)
|
||||
if k_from in sd:
|
||||
weights = sd.pop(k_from)
|
||||
shape_from = weights.shape[0] // 3
|
||||
for x in range(3):
|
||||
p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"]
|
||||
k_to = "{}.encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y)
|
||||
k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y)
|
||||
sd[k_to] = weights[shape_from*x:shape_from*(x + 1)]
|
||||
return sd
|
||||
|
||||
|
|
6
nodes.py
6
nodes.py
|
@ -48,7 +48,9 @@ class CLIPTextEncode:
|
|||
CATEGORY = "conditioning"
|
||||
|
||||
def encode(self, clip, text):
|
||||
return ([[clip.encode(text), {}]], )
|
||||
tokens = clip.tokenize(text)
|
||||
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
|
||||
return ([[cond, {"pooled_output": pooled}]], )
|
||||
|
||||
class ConditioningCombine:
|
||||
@classmethod
|
||||
|
@ -1344,7 +1346,7 @@ NODE_CLASS_MAPPINGS = {
|
|||
"DiffusersLoader": DiffusersLoader,
|
||||
|
||||
"LoadLatent": LoadLatent,
|
||||
"SaveLatent": SaveLatent
|
||||
"SaveLatent": SaveLatent,
|
||||
}
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
|
|
Loading…
Reference in New Issue