Merge branch 'master' into save-images
This commit is contained in:
commit
3d2f60b315
|
@ -0,0 +1,65 @@
|
|||
import pygit2
|
||||
from datetime import datetime
|
||||
import sys
|
||||
|
||||
def pull(repo, remote_name='origin', branch='master'):
|
||||
for remote in repo.remotes:
|
||||
if remote.name == remote_name:
|
||||
remote.fetch()
|
||||
remote_master_id = repo.lookup_reference('refs/remotes/origin/%s' % (branch)).target
|
||||
merge_result, _ = repo.merge_analysis(remote_master_id)
|
||||
# Up to date, do nothing
|
||||
if merge_result & pygit2.GIT_MERGE_ANALYSIS_UP_TO_DATE:
|
||||
return
|
||||
# We can just fastforward
|
||||
elif merge_result & pygit2.GIT_MERGE_ANALYSIS_FASTFORWARD:
|
||||
repo.checkout_tree(repo.get(remote_master_id))
|
||||
try:
|
||||
master_ref = repo.lookup_reference('refs/heads/%s' % (branch))
|
||||
master_ref.set_target(remote_master_id)
|
||||
except KeyError:
|
||||
repo.create_branch(branch, repo.get(remote_master_id))
|
||||
repo.head.set_target(remote_master_id)
|
||||
elif merge_result & pygit2.GIT_MERGE_ANALYSIS_NORMAL:
|
||||
repo.merge(remote_master_id)
|
||||
|
||||
if repo.index.conflicts is not None:
|
||||
for conflict in repo.index.conflicts:
|
||||
print('Conflicts found in:', conflict[0].path)
|
||||
raise AssertionError('Conflicts, ahhhhh!!')
|
||||
|
||||
user = repo.default_signature
|
||||
tree = repo.index.write_tree()
|
||||
commit = repo.create_commit('HEAD',
|
||||
user,
|
||||
user,
|
||||
'Merge!',
|
||||
tree,
|
||||
[repo.head.target, remote_master_id])
|
||||
# We need to do this or git CLI will think we are still merging.
|
||||
repo.state_cleanup()
|
||||
else:
|
||||
raise AssertionError('Unknown merge analysis result')
|
||||
|
||||
|
||||
repo = pygit2.Repository(str(sys.argv[1]))
|
||||
ident = pygit2.Signature('comfyui', 'comfy@ui')
|
||||
try:
|
||||
print("stashing current changes")
|
||||
repo.stash(ident)
|
||||
except KeyError:
|
||||
print("nothing to stash")
|
||||
backup_branch_name = 'backup_branch_{}'.format(datetime.today().strftime('%Y-%m-%d_%H_%M_%S'))
|
||||
print("creating backup branch: {}".format(backup_branch_name))
|
||||
repo.branches.local.create(backup_branch_name, repo.head.peel())
|
||||
|
||||
print("checking out master branch")
|
||||
branch = repo.lookup_branch('master')
|
||||
ref = repo.lookup_reference(branch.name)
|
||||
repo.checkout(ref)
|
||||
|
||||
print("pulling latest changes")
|
||||
pull(repo)
|
||||
|
||||
print("Done!")
|
||||
|
|
@ -0,0 +1,2 @@
|
|||
..\python_embeded\python.exe .\update.py ..\ComfyUI\
|
||||
pause
|
|
@ -0,0 +1,3 @@
|
|||
..\python_embeded\python.exe .\update.py ..\ComfyUI\
|
||||
..\python_embeded\python.exe -s -m pip install --upgrade --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118 -r ../ComfyUI/requirements.txt pygit2
|
||||
pause
|
|
@ -0,0 +1,27 @@
|
|||
HOW TO RUN:
|
||||
|
||||
if you have a NVIDIA gpu:
|
||||
|
||||
run_nvidia_gpu.bat
|
||||
|
||||
|
||||
|
||||
To run it in slow CPU mode:
|
||||
|
||||
run_cpu.bat
|
||||
|
||||
|
||||
|
||||
IF YOU GET A RED ERROR IN THE UI MAKE SURE YOU HAVE A MODEL/CHECKPOINT IN: ComfyUI\models\checkpoints
|
||||
|
||||
You can download the stable diffusion 1.5 one from: https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt
|
||||
|
||||
|
||||
|
||||
RECOMMENDED WAY TO UPDATE:
|
||||
To update the ComfyUI code: update\update_comfyui.bat
|
||||
|
||||
|
||||
|
||||
To update ComfyUI with the python dependencies:
|
||||
update\update_comfyui_and_python_dependencies.bat
|
|
@ -0,0 +1,2 @@
|
|||
.\python_embeded\python.exe -s ComfyUI\main.py --cpu --windows-standalone-build
|
||||
pause
|
|
@ -0,0 +1,2 @@
|
|||
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --use-pytorch-cross-attention
|
||||
pause
|
|
@ -0,0 +1,65 @@
|
|||
import pygit2
|
||||
from datetime import datetime
|
||||
import sys
|
||||
|
||||
def pull(repo, remote_name='origin', branch='master'):
|
||||
for remote in repo.remotes:
|
||||
if remote.name == remote_name:
|
||||
remote.fetch()
|
||||
remote_master_id = repo.lookup_reference('refs/remotes/origin/%s' % (branch)).target
|
||||
merge_result, _ = repo.merge_analysis(remote_master_id)
|
||||
# Up to date, do nothing
|
||||
if merge_result & pygit2.GIT_MERGE_ANALYSIS_UP_TO_DATE:
|
||||
return
|
||||
# We can just fastforward
|
||||
elif merge_result & pygit2.GIT_MERGE_ANALYSIS_FASTFORWARD:
|
||||
repo.checkout_tree(repo.get(remote_master_id))
|
||||
try:
|
||||
master_ref = repo.lookup_reference('refs/heads/%s' % (branch))
|
||||
master_ref.set_target(remote_master_id)
|
||||
except KeyError:
|
||||
repo.create_branch(branch, repo.get(remote_master_id))
|
||||
repo.head.set_target(remote_master_id)
|
||||
elif merge_result & pygit2.GIT_MERGE_ANALYSIS_NORMAL:
|
||||
repo.merge(remote_master_id)
|
||||
|
||||
if repo.index.conflicts is not None:
|
||||
for conflict in repo.index.conflicts:
|
||||
print('Conflicts found in:', conflict[0].path)
|
||||
raise AssertionError('Conflicts, ahhhhh!!')
|
||||
|
||||
user = repo.default_signature
|
||||
tree = repo.index.write_tree()
|
||||
commit = repo.create_commit('HEAD',
|
||||
user,
|
||||
user,
|
||||
'Merge!',
|
||||
tree,
|
||||
[repo.head.target, remote_master_id])
|
||||
# We need to do this or git CLI will think we are still merging.
|
||||
repo.state_cleanup()
|
||||
else:
|
||||
raise AssertionError('Unknown merge analysis result')
|
||||
|
||||
|
||||
repo = pygit2.Repository(str(sys.argv[1]))
|
||||
ident = pygit2.Signature('comfyui', 'comfy@ui')
|
||||
try:
|
||||
print("stashing current changes")
|
||||
repo.stash(ident)
|
||||
except KeyError:
|
||||
print("nothing to stash")
|
||||
backup_branch_name = 'backup_branch_{}'.format(datetime.today().strftime('%Y-%m-%d_%H_%M_%S'))
|
||||
print("creating backup branch: {}".format(backup_branch_name))
|
||||
repo.branches.local.create(backup_branch_name, repo.head.peel())
|
||||
|
||||
print("checking out master branch")
|
||||
branch = repo.lookup_branch('master')
|
||||
ref = repo.lookup_reference(branch.name)
|
||||
repo.checkout(ref)
|
||||
|
||||
print("pulling latest changes")
|
||||
pull(repo)
|
||||
|
||||
print("Done!")
|
||||
|
|
@ -0,0 +1,2 @@
|
|||
..\python_embeded\python.exe .\update.py ..\ComfyUI\
|
||||
pause
|
|
@ -0,0 +1,3 @@
|
|||
..\python_embeded\python.exe .\update.py ..\ComfyUI\
|
||||
..\python_embeded\python.exe -s -m pip install --upgrade torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 xformers -r ../ComfyUI/requirements.txt pygit2
|
||||
pause
|
|
@ -0,0 +1,27 @@
|
|||
HOW TO RUN:
|
||||
|
||||
if you have a NVIDIA gpu:
|
||||
|
||||
run_nvidia_gpu.bat
|
||||
|
||||
|
||||
|
||||
To run it in slow CPU mode:
|
||||
|
||||
run_cpu.bat
|
||||
|
||||
|
||||
|
||||
IF YOU GET A RED ERROR IN THE UI MAKE SURE YOU HAVE A MODEL/CHECKPOINT IN: ComfyUI\models\checkpoints
|
||||
|
||||
You can download the stable diffusion 1.5 one from: https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt
|
||||
|
||||
|
||||
RECOMMENDED WAY TO UPDATE:
|
||||
To update the ComfyUI code: update\update_comfyui.bat
|
||||
|
||||
|
||||
|
||||
To update ComfyUI with the python dependencies:
|
||||
update\update_comfyui_and_python_dependencies.bat
|
||||
|
|
@ -0,0 +1,2 @@
|
|||
.\python_embeded\python.exe -s ComfyUI\main.py --cpu --windows-standalone-build
|
||||
pause
|
|
@ -0,0 +1,2 @@
|
|||
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build
|
||||
pause
|
|
@ -0,0 +1,64 @@
|
|||
name: "Windows Release"
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
|
||||
jobs:
|
||||
build:
|
||||
permissions:
|
||||
contents: "write"
|
||||
packages: "write"
|
||||
pull-requests: "read"
|
||||
runs-on: windows-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- shell: bash
|
||||
run: |
|
||||
cd ..
|
||||
cp -r ComfyUI ComfyUI_copy
|
||||
curl https://www.python.org/ftp/python/3.10.9/python-3.10.9-embed-amd64.zip -o python_embeded.zip
|
||||
unzip python_embeded.zip -d python_embeded
|
||||
cd python_embeded
|
||||
echo 'import site' >> ./python310._pth
|
||||
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
|
||||
./python.exe get-pip.py
|
||||
./python.exe -s -m pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 xformers -r ../ComfyUI/requirements.txt pygit2
|
||||
sed -i '1i../ComfyUI' ./python310._pth
|
||||
cd ..
|
||||
|
||||
|
||||
mkdir ComfyUI_windows_portable
|
||||
mv python_embeded ComfyUI_windows_portable
|
||||
mv ComfyUI_copy ComfyUI_windows_portable/ComfyUI
|
||||
|
||||
cd ComfyUI_windows_portable
|
||||
|
||||
mkdir update
|
||||
cp -r ComfyUI/.ci/update_windows/* ./update/
|
||||
cp -r ComfyUI/.ci/windows_base_files/* ./
|
||||
|
||||
cd ..
|
||||
|
||||
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma -mx=8 -mfb=64 -md=32m -ms=on ComfyUI_windows_portable.7z ComfyUI_windows_portable
|
||||
mv ComfyUI_windows_portable.7z ComfyUI/ComfyUI_windows_portable_nvidia_or_cpu.7z
|
||||
|
||||
cd ComfyUI_windows_portable
|
||||
python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu
|
||||
|
||||
ls
|
||||
|
||||
|
||||
- name: Upload binaries to release
|
||||
uses: svenstaro/upload-release-action@v2
|
||||
with:
|
||||
repo_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
file: ComfyUI_windows_portable_nvidia_or_cpu.7z
|
||||
tag: "latest"
|
||||
overwrite: true
|
||||
|
|
@ -0,0 +1,63 @@
|
|||
name: "Windows Release cu118"
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
|
||||
jobs:
|
||||
build:
|
||||
permissions:
|
||||
contents: "write"
|
||||
packages: "write"
|
||||
pull-requests: "read"
|
||||
runs-on: windows-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- shell: bash
|
||||
run: |
|
||||
cd ..
|
||||
cp -r ComfyUI ComfyUI_copy
|
||||
curl https://www.python.org/ftp/python/3.10.9/python-3.10.9-embed-amd64.zip -o python_embeded.zip
|
||||
unzip python_embeded.zip -d python_embeded
|
||||
cd python_embeded
|
||||
echo 'import site' >> ./python310._pth
|
||||
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
|
||||
./python.exe get-pip.py
|
||||
./python.exe -s -m pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118 xformers -r ../ComfyUI/requirements.txt pygit2
|
||||
sed -i '1i../ComfyUI' ./python310._pth
|
||||
cd ..
|
||||
|
||||
|
||||
mkdir ComfyUI_windows_portable
|
||||
mv python_embeded ComfyUI_windows_portable
|
||||
mv ComfyUI_copy ComfyUI_windows_portable/ComfyUI
|
||||
|
||||
cd ComfyUI_windows_portable
|
||||
|
||||
mkdir update
|
||||
cp -r ComfyUI/.ci/update_windows/* ./update/
|
||||
cp -r ComfyUI/.ci/windows_base_files/* ./
|
||||
|
||||
cd ..
|
||||
|
||||
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma -mx=8 -mfb=64 -md=32m -ms=on ComfyUI_windows_portable.7z ComfyUI_windows_portable
|
||||
mv ComfyUI_windows_portable.7z ComfyUI/ComfyUI_windows_portable_nvidia_cu118_or_cpu.7z
|
||||
|
||||
cd ComfyUI_windows_portable
|
||||
python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu
|
||||
|
||||
ls
|
||||
|
||||
- name: Upload binaries to release
|
||||
uses: svenstaro/upload-release-action@v2
|
||||
with:
|
||||
repo_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
file: ComfyUI_windows_portable_nvidia_cu118_or_cpu.7z
|
||||
tag: "latest"
|
||||
overwrite: true
|
||||
|
|
@ -0,0 +1,66 @@
|
|||
name: "Windows Release Nightly pytorch"
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
|
||||
jobs:
|
||||
build:
|
||||
permissions:
|
||||
contents: "write"
|
||||
packages: "write"
|
||||
pull-requests: "read"
|
||||
runs-on: windows-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.10.9'
|
||||
- shell: bash
|
||||
run: |
|
||||
cd ..
|
||||
cp -r ComfyUI ComfyUI_copy
|
||||
curl https://www.python.org/ftp/python/3.10.9/python-3.10.9-embed-amd64.zip -o python_embeded.zip
|
||||
unzip python_embeded.zip -d python_embeded
|
||||
cd python_embeded
|
||||
echo 'import site' >> ./python310._pth
|
||||
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
|
||||
./python.exe get-pip.py
|
||||
python -m pip wheel torch torchvision torchaudio --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu118 -r ../ComfyUI/requirements.txt pygit2 -w ../temp_wheel_dir
|
||||
ls ../temp_wheel_dir
|
||||
./python.exe -s -m pip install --pre ../temp_wheel_dir/*
|
||||
sed -i '1i../ComfyUI' ./python310._pth
|
||||
cd ..
|
||||
|
||||
|
||||
mkdir ComfyUI_windows_portable_nightly_pytorch
|
||||
mv python_embeded ComfyUI_windows_portable_nightly_pytorch
|
||||
mv ComfyUI_copy ComfyUI_windows_portable_nightly_pytorch/ComfyUI
|
||||
|
||||
cd ComfyUI_windows_portable_nightly_pytorch
|
||||
|
||||
mkdir update
|
||||
cp -r ComfyUI/.ci/update_windows/* ./update/
|
||||
cp -r ComfyUI/.ci/windows_base_files/* ./
|
||||
|
||||
cd ..
|
||||
|
||||
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma -mx=8 -mfb=64 -md=32m -ms=on ComfyUI_windows_portable_nightly_pytorch.7z ComfyUI_windows_portable_nightly_pytorch
|
||||
mv ComfyUI_windows_portable_nightly_pytorch.7z ComfyUI/ComfyUI_windows_portable_nvidia_or_cpu_nightly_pytorch.7z
|
||||
|
||||
cd ComfyUI_windows_portable_nightly_pytorch
|
||||
python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu
|
||||
|
||||
ls
|
||||
|
||||
- name: Upload binaries to release
|
||||
uses: svenstaro/upload-release-action@v2
|
||||
with:
|
||||
repo_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
file: ComfyUI_windows_portable_nvidia_or_cpu_nightly_pytorch.7z
|
||||
tag: "latest"
|
||||
overwrite: true
|
27
README.md
27
README.md
|
@ -31,6 +31,20 @@ Workflow examples can be found on the [Examples page](https://comfyanonymous.git
|
|||
|
||||
# Installing
|
||||
|
||||
## Windows
|
||||
|
||||
There is a portable standalone build for Windows that should work for running on Nvidia GPUs or for running on your CPU only on the [releases page](https://github.com/comfyanonymous/ComfyUI/releases).
|
||||
|
||||
### [Direct link to download](https://github.com/comfyanonymous/ComfyUI/releases/download/latest/ComfyUI_windows_portable_nvidia_or_cpu.7z)
|
||||
|
||||
Just download, extract and run. Make sure you put your Stable Diffusion checkpoints/models (the huge ckpt/safetensors files) in: ComfyUI\models\checkpoints
|
||||
|
||||
## Colab Notebook
|
||||
|
||||
To run it on colab or paperspace you can use my [Colab Notebook](notebooks/comfyui_colab.ipynb) here: [Link to open with google colab](https://colab.research.google.com/github/comfyanonymous/ComfyUI/blob/master/notebooks/comfyui_colab.ipynb)
|
||||
|
||||
## Manual Install (Windows, Linux)
|
||||
|
||||
Git clone this repo.
|
||||
|
||||
Put your SD checkpoints (the huge ckpt/safetensors files) in: models/checkpoints
|
||||
|
@ -39,16 +53,17 @@ Put your VAE in: models/vae
|
|||
|
||||
At the time of writing this pytorch has issues with python versions higher than 3.10 so make sure your python/pip versions are 3.10.
|
||||
|
||||
### AMD
|
||||
AMD users can install rocm and pytorch with pip if you don't have it already installed:
|
||||
### AMD (Linux only)
|
||||
AMD users can install rocm and pytorch with pip if you don't have it already installed, this is the command to install the stable version:
|
||||
|
||||
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/rocm5.4.2```
|
||||
|
||||
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/rocm5.2```
|
||||
|
||||
### NVIDIA
|
||||
|
||||
Nvidia users should install torch using this command:
|
||||
|
||||
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117```
|
||||
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118```
|
||||
|
||||
Nvidia users should also install Xformers for a speed boost but can still run the software without it.
|
||||
|
||||
|
@ -112,10 +127,6 @@ To use a textual inversion concepts/embeddings in a text prompt put them in the
|
|||
|
||||
```embedding:embedding_filename.pt```
|
||||
|
||||
### Colab Notebook
|
||||
|
||||
To run it on colab or paperspace you can use my [Colab Notebook](notebooks/comfyui_colab.ipynb) here: [Link to open with google colab](https://colab.research.google.com/github/comfyanonymous/ComfyUI/blob/master/notebooks/comfyui_colab.ipynb)
|
||||
|
||||
### Fedora
|
||||
|
||||
To get python 3.10 on fedora:
|
||||
|
|
|
@ -59,9 +59,9 @@ class ControlNet(nn.Module):
|
|||
|
||||
if context_dim is not None:
|
||||
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
||||
from omegaconf.listconfig import ListConfig
|
||||
if type(context_dim) == ListConfig:
|
||||
context_dim = list(context_dim)
|
||||
# from omegaconf.listconfig import ListConfig
|
||||
# if type(context_dim) == ListConfig:
|
||||
# context_dim = list(context_dim)
|
||||
|
||||
if num_heads_upsample == -1:
|
||||
num_heads_upsample = num_heads
|
||||
|
|
|
@ -18,7 +18,6 @@ import itertools
|
|||
from tqdm import tqdm
|
||||
from torchvision.utils import make_grid
|
||||
# from pytorch_lightning.utilities.distributed import rank_zero_only
|
||||
from omegaconf import ListConfig
|
||||
|
||||
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
|
||||
from ldm.modules.ema import LitEma
|
||||
|
@ -1124,8 +1123,8 @@ class LatentDiffusion(DDPM):
|
|||
def get_unconditional_conditioning(self, batch_size, null_label=None):
|
||||
if null_label is not None:
|
||||
xc = null_label
|
||||
if isinstance(xc, ListConfig):
|
||||
xc = list(xc)
|
||||
# if isinstance(xc, ListConfig):
|
||||
# xc = list(xc)
|
||||
if isinstance(xc, dict) or isinstance(xc, list):
|
||||
c = self.get_learned_conditioning(xc)
|
||||
else:
|
||||
|
|
|
@ -11,12 +11,10 @@ from .sub_quadratic_attention import efficient_dot_product_attention
|
|||
|
||||
import model_management
|
||||
|
||||
try:
|
||||
|
||||
if model_management.xformers_enabled():
|
||||
import xformers
|
||||
import xformers.ops
|
||||
XFORMERS_IS_AVAILBLE = True
|
||||
except:
|
||||
XFORMERS_IS_AVAILBLE = False
|
||||
|
||||
# CrossAttn precision handling
|
||||
import os
|
||||
|
@ -481,23 +479,19 @@ class CrossAttentionPytorch(nn.Module):
|
|||
return self.to_out(out)
|
||||
|
||||
import sys
|
||||
if XFORMERS_IS_AVAILBLE == False or "--disable-xformers" in sys.argv:
|
||||
if model_management.xformers_enabled():
|
||||
print("Using xformers cross attention")
|
||||
CrossAttention = MemoryEfficientCrossAttention
|
||||
elif model_management.pytorch_attention_enabled():
|
||||
print("Using pytorch cross attention")
|
||||
CrossAttention = CrossAttentionPytorch
|
||||
else:
|
||||
if "--use-split-cross-attention" in sys.argv:
|
||||
print("Using split optimization for cross attention")
|
||||
CrossAttention = CrossAttentionDoggettx
|
||||
else:
|
||||
if "--use-pytorch-cross-attention" in sys.argv:
|
||||
print("Using pytorch cross attention")
|
||||
torch.backends.cuda.enable_math_sdp(False)
|
||||
torch.backends.cuda.enable_flash_sdp(True)
|
||||
torch.backends.cuda.enable_mem_efficient_sdp(True)
|
||||
CrossAttention = CrossAttentionPytorch
|
||||
else:
|
||||
print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
|
||||
CrossAttention = CrossAttentionBirchSan
|
||||
else:
|
||||
print("Using xformers cross attention")
|
||||
CrossAttention = MemoryEfficientCrossAttention
|
||||
print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
|
||||
CrossAttention = CrossAttentionBirchSan
|
||||
|
||||
|
||||
class BasicTransformerBlock(nn.Module):
|
||||
|
|
|
@ -9,13 +9,9 @@ from typing import Optional, Any
|
|||
from ldm.modules.attention import MemoryEfficientCrossAttention
|
||||
import model_management
|
||||
|
||||
try:
|
||||
if model_management.xformers_enabled():
|
||||
import xformers
|
||||
import xformers.ops
|
||||
XFORMERS_IS_AVAILBLE = True
|
||||
except:
|
||||
XFORMERS_IS_AVAILBLE = False
|
||||
print("No module 'xformers'. Proceeding without it.")
|
||||
|
||||
try:
|
||||
OOM_EXCEPTION = torch.cuda.OutOfMemoryError
|
||||
|
@ -303,6 +299,64 @@ class MemoryEfficientAttnBlock(nn.Module):
|
|||
out = self.proj_out(out)
|
||||
return x+out
|
||||
|
||||
class MemoryEfficientAttnBlockPytorch(nn.Module):
|
||||
def __init__(self, in_channels):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.norm = Normalize(in_channels)
|
||||
self.q = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.k = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.v = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.proj_out = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.attention_op: Optional[Any] = None
|
||||
|
||||
def forward(self, x):
|
||||
h_ = x
|
||||
h_ = self.norm(h_)
|
||||
q = self.q(h_)
|
||||
k = self.k(h_)
|
||||
v = self.v(h_)
|
||||
|
||||
# compute attention
|
||||
B, C, H, W = q.shape
|
||||
q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v))
|
||||
|
||||
q, k, v = map(
|
||||
lambda t: t.unsqueeze(3)
|
||||
.reshape(B, t.shape[1], 1, C)
|
||||
.permute(0, 2, 1, 3)
|
||||
.reshape(B * 1, t.shape[1], C)
|
||||
.contiguous(),
|
||||
(q, k, v),
|
||||
)
|
||||
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
|
||||
|
||||
out = (
|
||||
out.unsqueeze(0)
|
||||
.reshape(B, 1, out.shape[1], C)
|
||||
.permute(0, 2, 1, 3)
|
||||
.reshape(B, out.shape[1], C)
|
||||
)
|
||||
out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C)
|
||||
out = self.proj_out(out)
|
||||
return x+out
|
||||
|
||||
class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
|
||||
def forward(self, x, context=None, mask=None):
|
||||
|
@ -315,8 +369,10 @@ class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
|
|||
|
||||
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
|
||||
assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none"], f'attn_type {attn_type} unknown'
|
||||
if XFORMERS_IS_AVAILBLE and attn_type == "vanilla":
|
||||
if model_management.xformers_enabled() and attn_type == "vanilla":
|
||||
attn_type = "vanilla-xformers"
|
||||
if model_management.pytorch_attention_enabled() and attn_type == "vanilla":
|
||||
attn_type = "vanilla-pytorch"
|
||||
print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
||||
if attn_type == "vanilla":
|
||||
assert attn_kwargs is None
|
||||
|
@ -324,6 +380,8 @@ def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
|
|||
elif attn_type == "vanilla-xformers":
|
||||
print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
|
||||
return MemoryEfficientAttnBlock(in_channels)
|
||||
elif attn_type == "vanilla-pytorch":
|
||||
return MemoryEfficientAttnBlockPytorch(in_channels)
|
||||
elif type == "memory-efficient-cross-attn":
|
||||
attn_kwargs["query_dim"] = in_channels
|
||||
return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
|
||||
|
|
|
@ -477,9 +477,9 @@ class UNetModel(nn.Module):
|
|||
|
||||
if context_dim is not None:
|
||||
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
||||
from omegaconf.listconfig import ListConfig
|
||||
if type(context_dim) == ListConfig:
|
||||
context_dim = list(context_dim)
|
||||
# from omegaconf.listconfig import ListConfig
|
||||
# if type(context_dim) == ListConfig:
|
||||
# context_dim = list(context_dim)
|
||||
|
||||
if num_heads_upsample == -1:
|
||||
num_heads_upsample = num_heads
|
||||
|
|
|
@ -31,8 +31,25 @@ try:
|
|||
except:
|
||||
pass
|
||||
|
||||
if "--cpu" in sys.argv:
|
||||
vram_state = CPU
|
||||
if "--disable-xformers" in sys.argv:
|
||||
XFORMERS_IS_AVAILBLE = False
|
||||
else:
|
||||
try:
|
||||
import xformers
|
||||
import xformers.ops
|
||||
XFORMERS_IS_AVAILBLE = True
|
||||
except:
|
||||
XFORMERS_IS_AVAILBLE = False
|
||||
|
||||
ENABLE_PYTORCH_ATTENTION = False
|
||||
if "--use-pytorch-cross-attention" in sys.argv:
|
||||
torch.backends.cuda.enable_math_sdp(True)
|
||||
torch.backends.cuda.enable_flash_sdp(True)
|
||||
torch.backends.cuda.enable_mem_efficient_sdp(True)
|
||||
ENABLE_PYTORCH_ATTENTION = True
|
||||
XFORMERS_IS_AVAILBLE = False
|
||||
|
||||
|
||||
if "--lowvram" in sys.argv:
|
||||
set_vram_to = LOW_VRAM
|
||||
if "--novram" in sys.argv:
|
||||
|
@ -54,6 +71,8 @@ if set_vram_to == LOW_VRAM or set_vram_to == NO_VRAM:
|
|||
total_vram_available_mb = (total_vram - 1024) // 2
|
||||
total_vram_available_mb = int(max(256, total_vram_available_mb))
|
||||
|
||||
if "--cpu" in sys.argv:
|
||||
vram_state = CPU
|
||||
|
||||
print("Set vram state to:", ["CPU", "NO VRAM", "LOW VRAM", "NORMAL VRAM", "HIGH VRAM"][vram_state])
|
||||
|
||||
|
@ -159,6 +178,14 @@ def get_autocast_device(dev):
|
|||
return dev.type
|
||||
return "cuda"
|
||||
|
||||
def xformers_enabled():
|
||||
if vram_state == CPU:
|
||||
return False
|
||||
return XFORMERS_IS_AVAILBLE
|
||||
|
||||
def pytorch_attention_enabled():
|
||||
return ENABLE_PYTORCH_ATTENTION
|
||||
|
||||
def get_free_memory(dev=None, torch_free_too=False):
|
||||
if dev is None:
|
||||
dev = get_torch_device()
|
||||
|
|
20
comfy/sd.py
20
comfy/sd.py
|
@ -6,7 +6,7 @@ import sd2_clip
|
|||
import model_management
|
||||
from .ldm.util import instantiate_from_config
|
||||
from .ldm.models.autoencoder import AutoencoderKL
|
||||
from omegaconf import OmegaConf
|
||||
import yaml
|
||||
from .cldm import cldm
|
||||
from .t2i_adapter import adapter
|
||||
|
||||
|
@ -726,12 +726,19 @@ def load_clip(ckpt_path, embedding_directory=None):
|
|||
return clip
|
||||
|
||||
def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=None):
|
||||
config = OmegaConf.load(config_path)
|
||||
with open(config_path, 'r') as stream:
|
||||
config = yaml.safe_load(stream)
|
||||
model_config_params = config['model']['params']
|
||||
clip_config = model_config_params['cond_stage_config']
|
||||
scale_factor = model_config_params['scale_factor']
|
||||
vae_config = model_config_params['first_stage_config']
|
||||
|
||||
fp16 = False
|
||||
if "unet_config" in model_config_params:
|
||||
if "params" in model_config_params["unet_config"]:
|
||||
if "use_fp16" in model_config_params["unet_config"]["params"]:
|
||||
fp16 = model_config_params["unet_config"]["params"]["use_fp16"]
|
||||
|
||||
clip = None
|
||||
vae = None
|
||||
|
||||
|
@ -750,9 +757,13 @@ def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, e
|
|||
w.cond_stage_model = clip.cond_stage_model
|
||||
load_state_dict_to = [w]
|
||||
|
||||
model = instantiate_from_config(config.model)
|
||||
model = instantiate_from_config(config["model"])
|
||||
sd = load_torch_file(ckpt_path)
|
||||
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
|
||||
|
||||
if fp16:
|
||||
model = model.half()
|
||||
|
||||
return (ModelPatcher(model), clip, vae)
|
||||
|
||||
|
||||
|
@ -853,4 +864,7 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, e
|
|||
model = instantiate_from_config(model_config)
|
||||
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
|
||||
|
||||
if fp16:
|
||||
model = model.half()
|
||||
|
||||
return (ModelPatcher(model), clip, vae)
|
||||
|
|
35
main.py
35
main.py
|
@ -1,5 +1,6 @@
|
|||
import os
|
||||
import sys
|
||||
import shutil
|
||||
|
||||
import threading
|
||||
import asyncio
|
||||
|
@ -8,9 +9,6 @@ if os.name == "nt":
|
|||
import logging
|
||||
logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage())
|
||||
|
||||
import execution
|
||||
import server
|
||||
|
||||
if __name__ == "__main__":
|
||||
if '--help' in sys.argv:
|
||||
print("Valid Command line Arguments:")
|
||||
|
@ -18,6 +16,8 @@ if __name__ == "__main__":
|
|||
print("\t--port 8188\t\t\tSet the listen port.")
|
||||
print("\t--dont-upcast-attention\t\tDisable upcasting of attention \n\t\t\t\t\tcan boost speed but increase the chances of black images.\n")
|
||||
print("\t--use-split-cross-attention\tUse the split cross attention optimization instead of the sub-quadratic one.\n\t\t\t\t\tIgnored when xformers is used.")
|
||||
print("\t--use-pytorch-cross-attention\tUse the new pytorch 2.0 cross attention function.")
|
||||
print("\t--disable-xformers\t\tdisables xformers")
|
||||
print()
|
||||
print("\t--highvram\t\t\tBy default models will be unloaded to CPU memory after being used.\n\t\t\t\t\tThis option keeps them in GPU memory.\n")
|
||||
print("\t--normalvram\t\t\tUsed to force normal vram use if lowvram gets automatically enabled.")
|
||||
|
@ -31,6 +31,9 @@ if __name__ == "__main__":
|
|||
print("disabling upcasting of attention")
|
||||
os.environ['ATTN_PRECISION'] = "fp16"
|
||||
|
||||
import execution
|
||||
import server
|
||||
|
||||
def prompt_worker(q, server):
|
||||
e = execution.PromptExecutor(server)
|
||||
while True:
|
||||
|
@ -38,8 +41,8 @@ def prompt_worker(q, server):
|
|||
e.execute(item[-2], item[-1])
|
||||
q.task_done(item_id, e.outputs)
|
||||
|
||||
async def run(server, address='', port=8188, verbose=True):
|
||||
await asyncio.gather(server.start(address, port, verbose), server.publish_loop())
|
||||
async def run(server, address='', port=8188, verbose=True, call_on_start=None):
|
||||
await asyncio.gather(server.start(address, port, verbose, call_on_start), server.publish_loop())
|
||||
|
||||
def hijack_progress(server):
|
||||
from tqdm.auto import tqdm
|
||||
|
@ -51,7 +54,14 @@ def hijack_progress(server):
|
|||
return v
|
||||
setattr(tqdm, "update", wrapped_func)
|
||||
|
||||
def cleanup_temp():
|
||||
temp_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "temp")
|
||||
if os.path.exists(temp_dir):
|
||||
shutil.rmtree(temp_dir, ignore_errors=True)
|
||||
|
||||
if __name__ == "__main__":
|
||||
cleanup_temp()
|
||||
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
server = server.PromptServer(loop)
|
||||
|
@ -76,11 +86,22 @@ if __name__ == "__main__":
|
|||
except:
|
||||
pass
|
||||
|
||||
if '--quick-test-for-ci' in sys.argv:
|
||||
exit(0)
|
||||
|
||||
call_on_start = None
|
||||
if "--windows-standalone-build" in sys.argv:
|
||||
def startup_server(address, port):
|
||||
import webbrowser
|
||||
webbrowser.open("http://{}:{}".format(address, port))
|
||||
call_on_start = startup_server
|
||||
|
||||
if os.name == "nt":
|
||||
try:
|
||||
loop.run_until_complete(run(server, address=address, port=port, verbose=not dont_print))
|
||||
loop.run_until_complete(run(server, address=address, port=port, verbose=not dont_print, call_on_start=call_on_start))
|
||||
except KeyboardInterrupt:
|
||||
pass
|
||||
else:
|
||||
loop.run_until_complete(run(server, address=address, port=port, verbose=not dont_print))
|
||||
loop.run_until_complete(run(server, address=address, port=port, verbose=not dont_print, call_on_start=call_on_start))
|
||||
|
||||
cleanup_temp()
|
||||
|
|
20
nodes.py
20
nodes.py
|
@ -775,6 +775,7 @@ class KSamplerAdvanced:
|
|||
class SaveImage:
|
||||
def __init__(self):
|
||||
self.output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")
|
||||
self.url_suffix = ""
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
|
@ -818,6 +819,9 @@ class SaveImage:
|
|||
os.makedirs(full_output_folder, exist_ok=True)
|
||||
counter = 1
|
||||
|
||||
if not os.path.exists(self.output_dir):
|
||||
os.makedirs(self.output_dir)
|
||||
|
||||
paths = list()
|
||||
for image in images:
|
||||
i = 255. * image.cpu().numpy()
|
||||
|
@ -828,12 +832,25 @@ class SaveImage:
|
|||
if extra_pnginfo is not None:
|
||||
for x in extra_pnginfo:
|
||||
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
|
||||
|
||||
file = f"{filename}_{counter:05}_.png"
|
||||
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, optimize=True)
|
||||
paths.append(os.path.join(subfolder, file))
|
||||
paths.append(os.path.join(subfolder, file + self.url_suffix))
|
||||
counter += 1
|
||||
return { "ui": { "images": paths } }
|
||||
|
||||
class PreviewImage(SaveImage):
|
||||
def __init__(self):
|
||||
self.output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "temp")
|
||||
self.url_suffix = "?type=temp"
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required":
|
||||
{"images": ("IMAGE", ), },
|
||||
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
||||
}
|
||||
|
||||
class LoadImage:
|
||||
input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
|
||||
@classmethod
|
||||
|
@ -954,6 +971,7 @@ NODE_CLASS_MAPPINGS = {
|
|||
"EmptyLatentImage": EmptyLatentImage,
|
||||
"LatentUpscale": LatentUpscale,
|
||||
"SaveImage": SaveImage,
|
||||
"PreviewImage": PreviewImage,
|
||||
"LoadImage": LoadImage,
|
||||
"LoadImageMask": LoadImageMask,
|
||||
"ImageScale": ImageScale,
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
torch
|
||||
torchdiffeq
|
||||
torchsde
|
||||
omegaconf
|
||||
einops
|
||||
open-clip-torch
|
||||
transformers
|
||||
|
@ -9,3 +8,4 @@ safetensors
|
|||
pytorch_lightning
|
||||
aiohttp
|
||||
accelerate
|
||||
pyyaml
|
||||
|
|
|
@ -113,7 +113,7 @@ class PromptServer():
|
|||
async def view_image(request):
|
||||
if "file" in request.rel_url.query:
|
||||
type = request.rel_url.query.get("type", "output")
|
||||
if type != "output" and type != "input":
|
||||
if type not in ["output", "input", "temp"]:
|
||||
return web.Response(status=400)
|
||||
|
||||
output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), type)
|
||||
|
@ -267,7 +267,7 @@ class PromptServer():
|
|||
msg = await self.messages.get()
|
||||
await self.send(*msg)
|
||||
|
||||
async def start(self, address, port, verbose=True):
|
||||
async def start(self, address, port, verbose=True, call_on_start=None):
|
||||
runner = web.AppRunner(self.app)
|
||||
await runner.setup()
|
||||
site = web.TCPSite(runner, address, port)
|
||||
|
@ -278,3 +278,6 @@ class PromptServer():
|
|||
if verbose:
|
||||
print("Starting server\n")
|
||||
print("To see the GUI go to: http://{}:{}".format(address, port))
|
||||
if call_on_start is not None:
|
||||
call_on_start(address, port)
|
||||
|
||||
|
|
|
@ -144,7 +144,14 @@ class ComfyApp {
|
|||
if (numImages === 1 && !imageIndex) {
|
||||
this.imageIndex = imageIndex = 0;
|
||||
}
|
||||
let shiftY = this.type === "SaveImage" ? 55 : this.imageOffset || 0;
|
||||
|
||||
let shiftY;
|
||||
if (this.imageOffset != null) {
|
||||
shiftY = this.imageOffset;
|
||||
} else {
|
||||
shiftY = this.computeSize()[1];
|
||||
}
|
||||
|
||||
let dw = this.size[0];
|
||||
let dh = this.size[1];
|
||||
dh -= shiftY;
|
||||
|
@ -400,6 +407,15 @@ class ComfyApp {
|
|||
api.init();
|
||||
}
|
||||
|
||||
#addKeyboardHandler() {
|
||||
window.addEventListener("keydown", (e) => {
|
||||
// Queue prompt using ctrl or command + enter
|
||||
if ((e.ctrlKey || e.metaKey) && (e.key === "Enter" || e.keyCode === 13 || e.keyCode === 10)) {
|
||||
this.queuePrompt(e.shiftKey ? -1 : 0);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Loads all extensions from the API into the window
|
||||
*/
|
||||
|
@ -466,6 +482,7 @@ class ComfyApp {
|
|||
this.#addApiUpdateHandlers();
|
||||
this.#addDropHandler();
|
||||
this.#addPasteHandler();
|
||||
this.#addKeyboardHandler();
|
||||
|
||||
await this.#invokeExtensionsAsync("setup");
|
||||
}
|
||||
|
@ -499,7 +516,11 @@ class ComfyApp {
|
|||
|
||||
if (Array.isArray(type)) {
|
||||
// Enums e.g. latent rotation
|
||||
this.addWidget("combo", inputName, type[0], () => {}, { values: type });
|
||||
let defaultValue = type[0];
|
||||
if (inputData[1] && inputData[1].default) {
|
||||
defaultValue = inputData[1].default;
|
||||
}
|
||||
this.addWidget("combo", inputName, defaultValue, () => {}, { values: type });
|
||||
} else if (`${type}:${inputName}` in widgets) {
|
||||
// Support custom widgets by Type:Name
|
||||
Object.assign(config, widgets[`${type}:${inputName}`](this, inputName, inputData, app) || {});
|
||||
|
|
Loading…
Reference in New Issue