Fix model_management import so it doesn't get executed twice.
This commit is contained in:
parent
81d1f00df3
commit
73c3e11e83
|
@ -9,7 +9,7 @@ from typing import Optional, Any
|
|||
from ldm.modules.diffusionmodules.util import checkpoint
|
||||
from .sub_quadratic_attention import efficient_dot_product_attention
|
||||
|
||||
import model_management
|
||||
from comfy import model_management
|
||||
|
||||
from . import tomesd
|
||||
|
||||
|
|
|
@ -7,7 +7,7 @@ from einops import rearrange
|
|||
from typing import Optional, Any
|
||||
|
||||
from ldm.modules.attention import MemoryEfficientCrossAttention
|
||||
import model_management
|
||||
from comfy import model_management
|
||||
|
||||
if model_management.xformers_enabled_vae():
|
||||
import xformers
|
||||
|
|
|
@ -24,7 +24,7 @@ except ImportError:
|
|||
from torch import Tensor
|
||||
from typing import List
|
||||
|
||||
import model_management
|
||||
from comfy import model_management
|
||||
|
||||
def dynamic_slice(
|
||||
x: Tensor,
|
||||
|
|
|
@ -3,7 +3,7 @@ from .k_diffusion import external as k_diffusion_external
|
|||
from .extra_samplers import uni_pc
|
||||
import torch
|
||||
import contextlib
|
||||
import model_management
|
||||
from comfy import model_management
|
||||
from .ldm.models.diffusion.ddim import DDIMSampler
|
||||
from .ldm.modules.diffusionmodules.util import make_ddim_timesteps
|
||||
|
||||
|
|
|
@ -4,7 +4,7 @@ import copy
|
|||
|
||||
import sd1_clip
|
||||
import sd2_clip
|
||||
import model_management
|
||||
from comfy import model_management
|
||||
from .ldm.util import instantiate_from_config
|
||||
from .ldm.models.autoencoder import AutoencoderKL
|
||||
import yaml
|
||||
|
@ -388,7 +388,7 @@ class CLIP:
|
|||
return cond
|
||||
|
||||
def encode(self, text):
|
||||
tokens = self.tokenizer.tokenize_with_weights(text)
|
||||
tokens = self.tokenize(text)
|
||||
return self.encode_from_tokens(tokens)
|
||||
|
||||
class VAE:
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import os
|
||||
from comfy_extras.chainner_models import model_loading
|
||||
import model_management
|
||||
from comfy import model_management
|
||||
import torch
|
||||
import comfy.utils
|
||||
import folder_paths
|
||||
|
|
14
nodes.py
14
nodes.py
|
@ -21,16 +21,16 @@ import comfy.utils
|
|||
|
||||
import comfy.clip_vision
|
||||
|
||||
import model_management
|
||||
import comfy.model_management
|
||||
import importlib
|
||||
|
||||
import folder_paths
|
||||
|
||||
def before_node_execution():
|
||||
model_management.throw_exception_if_processing_interrupted()
|
||||
comfy.model_management.throw_exception_if_processing_interrupted()
|
||||
|
||||
def interrupt_processing(value=True):
|
||||
model_management.interrupt_current_processing(value)
|
||||
comfy.model_management.interrupt_current_processing(value)
|
||||
|
||||
MAX_RESOLUTION=8192
|
||||
|
||||
|
@ -241,7 +241,7 @@ class DiffusersLoader:
|
|||
model_path = os.path.join(search_path, model_path)
|
||||
break
|
||||
|
||||
return comfy.diffusers_convert.load_diffusers(model_path, fp16=model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
||||
return comfy.diffusers_convert.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
||||
|
||||
|
||||
class unCLIPCheckpointLoader:
|
||||
|
@ -680,7 +680,7 @@ class SetLatentNoiseMask:
|
|||
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
|
||||
latent_image = latent["samples"]
|
||||
noise_mask = None
|
||||
device = model_management.get_torch_device()
|
||||
device = comfy.model_management.get_torch_device()
|
||||
|
||||
if disable_noise:
|
||||
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
|
||||
|
@ -696,7 +696,7 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive,
|
|||
noise_mask = noise_mask.to(device)
|
||||
|
||||
real_model = None
|
||||
model_management.load_model_gpu(model)
|
||||
comfy.model_management.load_model_gpu(model)
|
||||
real_model = model.model
|
||||
|
||||
noise = noise.to(device)
|
||||
|
@ -726,7 +726,7 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive,
|
|||
control_net_models = []
|
||||
for x in control_nets:
|
||||
control_net_models += x.get_control_models()
|
||||
model_management.load_controlnet_gpu(control_net_models)
|
||||
comfy.model_management.load_controlnet_gpu(control_net_models)
|
||||
|
||||
if sampler_name in comfy.samplers.KSampler.SAMPLERS:
|
||||
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
|
||||
|
|
Loading…
Reference in New Issue