Add support for multiple unique inpainting masks
This enables workflows like "Inpaint at full resolution" when using batch sizes greater than 1.
This commit is contained in:
parent
6908f9c949
commit
ee030d281b
23
nodes.py
23
nodes.py
|
@ -171,24 +171,28 @@ class VAEEncodeForInpaint:
|
|||
def encode(self, vae, pixels, mask):
|
||||
x = (pixels.shape[1] // 64) * 64
|
||||
y = (pixels.shape[2] // 64) * 64
|
||||
mask = torch.nn.functional.interpolate(mask[None,None,], size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")[0][0]
|
||||
if len(mask.shape) < 3:
|
||||
mask = mask.unsqueeze(0).unsqueeze(0)
|
||||
elif len(mask.shape) < 4:
|
||||
mask = mask.unsqueeze(1)
|
||||
mask = torch.nn.functional.interpolate(mask, size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
|
||||
|
||||
pixels = pixels.clone()
|
||||
if pixels.shape[1] != x or pixels.shape[2] != y:
|
||||
pixels = pixels[:,:x,:y,:]
|
||||
mask = mask[:x,:y]
|
||||
mask = mask[:,:x,:y,:]
|
||||
|
||||
#grow mask by a few pixels to keep things seamless in latent space
|
||||
kernel_tensor = torch.ones((1, 1, 6, 6))
|
||||
mask_erosion = torch.clamp(torch.nn.functional.conv2d((mask.round())[None], kernel_tensor, padding=3), 0, 1)
|
||||
m = (1.0 - mask.round())
|
||||
mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=3), 0, 1)
|
||||
m = (1.0 - mask.round()).squeeze(1)
|
||||
for i in range(3):
|
||||
pixels[:,:,:,i] -= 0.5
|
||||
pixels[:,:,:,i] *= m
|
||||
pixels[:,:,:,i] += 0.5
|
||||
t = vae.encode(pixels)
|
||||
|
||||
return ({"samples":t, "noise_mask": (mask_erosion[0][:x,:y].round())}, )
|
||||
return ({"samples":t, "noise_mask": (mask_erosion[:,:x,:y,:].round())}, )
|
||||
|
||||
class CheckpointLoader:
|
||||
@classmethod
|
||||
|
@ -759,10 +763,15 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive,
|
|||
|
||||
if "noise_mask" in latent:
|
||||
noise_mask = latent['noise_mask']
|
||||
noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear")
|
||||
if len(noise_mask.shape) < 3:
|
||||
noise_mask = noise_mask.unsqueeze(0).unsqueeze(0)
|
||||
elif len(noise_mask.shape) < 4:
|
||||
noise_mask = noise_mask.unsqueeze(1)
|
||||
noise_mask = torch.nn.functional.interpolate(noise_mask, size=(noise.shape[2], noise.shape[3]), mode="bilinear")
|
||||
noise_mask = noise_mask.round()
|
||||
noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
|
||||
noise_mask = torch.cat([noise_mask] * noise.shape[0])
|
||||
if noise_mask.shape[0] < latent_image.shape[0]:
|
||||
noise_mask = noise_mask.repeat(latent_image.shape[0] // noise_mask.shape[0], 1, 1, 1)
|
||||
noise_mask = noise_mask.to(device)
|
||||
|
||||
real_model = None
|
||||
|
|
Loading…
Reference in New Issue