Make previews into cli option
This commit is contained in:
parent
f326a0a468
commit
48f7ec750c
|
@ -1,4 +1,35 @@
|
|||
import argparse
|
||||
import enum
|
||||
|
||||
|
||||
class EnumAction(argparse.Action):
|
||||
"""
|
||||
Argparse action for handling Enums
|
||||
"""
|
||||
def __init__(self, **kwargs):
|
||||
# Pop off the type value
|
||||
enum_type = kwargs.pop("type", None)
|
||||
|
||||
# Ensure an Enum subclass is provided
|
||||
if enum_type is None:
|
||||
raise ValueError("type must be assigned an Enum when using EnumAction")
|
||||
if not issubclass(enum_type, enum.Enum):
|
||||
raise TypeError("type must be an Enum when using EnumAction")
|
||||
|
||||
# Generate choices from the Enum
|
||||
choices = tuple(e.value for e in enum_type)
|
||||
kwargs.setdefault("choices", choices)
|
||||
kwargs.setdefault("metavar", f"[{','.join(list(choices))}]")
|
||||
|
||||
super(EnumAction, self).__init__(**kwargs)
|
||||
|
||||
self._enum = enum_type
|
||||
|
||||
def __call__(self, parser, namespace, values, option_string=None):
|
||||
# Convert value back into an Enum
|
||||
value = self._enum(values)
|
||||
setattr(namespace, self.dest, value)
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
|
@ -13,6 +44,11 @@ parser.add_argument("--dont-upcast-attention", action="store_true", help="Disabl
|
|||
parser.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).")
|
||||
parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
|
||||
|
||||
class PreviewType(enum.Enum):
|
||||
TAESD = "taesd"
|
||||
parser.add_argument("--disable-previews", action="store_true", help="Disable showing node previews.")
|
||||
parser.add_argument("--default-preview-method", type=str, default=PreviewType.TAESD, metavar="PREVIEW_TYPE", help="Default preview method for sampler nodes.")
|
||||
|
||||
attn_group = parser.add_mutually_exclusive_group()
|
||||
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization instead of the sub-quadratic one. Ignored when xformers is used.")
|
||||
attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")
|
||||
|
|
1
main.py
1
main.py
|
@ -45,7 +45,6 @@ def hijack_progress(server):
|
|||
server.send_sync("progress", { "value": value, "max": total}, server.client_id)
|
||||
if preview_image_bytes is not None:
|
||||
server.send_sync(BinaryEventTypes.PREVIEW_IMAGE, preview_image_bytes, server.client_id)
|
||||
pass
|
||||
comfy.utils.set_progress_bar_global_hook(hook)
|
||||
|
||||
def cleanup_temp():
|
||||
|
|
104
nodes.py
104
nodes.py
|
@ -24,6 +24,7 @@ import comfy.samplers
|
|||
import comfy.sample
|
||||
import comfy.sd
|
||||
import comfy.utils
|
||||
from comfy.cli_args import args
|
||||
from comfy.taesd.taesd import TAESD
|
||||
|
||||
import comfy.clip_vision
|
||||
|
@ -180,21 +181,6 @@ class VAEDecodeTiled:
|
|||
def decode(self, vae, samples):
|
||||
return (vae.decode_tiled(samples["samples"]), )
|
||||
|
||||
class TAESDDecode:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "samples": ("LATENT", ), "taesd": ("TAESD", )}}
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "decode"
|
||||
|
||||
CATEGORY = "latent"
|
||||
|
||||
def decode(self, taesd, samples):
|
||||
device = comfy.model_management.get_torch_device()
|
||||
# [B, C, H, W] -> [B, H, W, C]
|
||||
pixels = taesd.decoder(samples["samples"].to(device)).permute(0, 2, 3, 1).detach().clamp(0, 1)
|
||||
return (pixels, )
|
||||
|
||||
class VAEEncode:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
|
@ -272,21 +258,6 @@ class VAEEncodeForInpaint:
|
|||
|
||||
return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
|
||||
|
||||
class TAESDEncode:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "pixels": ("IMAGE", ), "taesd": ("TAESD", )}}
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "encode"
|
||||
|
||||
CATEGORY = "latent"
|
||||
|
||||
def encode(self, taesd, pixels):
|
||||
device = comfy.model_management.get_torch_device()
|
||||
# [B, H, W, C] -> [B, C, H, W]
|
||||
samples = taesd.encoder(pixels.permute(0, 3, 1, 2).to(device)).to(device)
|
||||
return ({"samples": samples}, )
|
||||
|
||||
class TAESDPreviewerImpl(LatentPreviewer):
|
||||
def __init__(self, taesd):
|
||||
self.taesd = taesd
|
||||
|
@ -297,18 +268,6 @@ class TAESDPreviewerImpl(LatentPreviewer):
|
|||
x_sample = x_sample * 0.5
|
||||
return x_sample
|
||||
|
||||
class TAESDPreviewer:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "taesd": ("TAESD", ), }}
|
||||
RETURN_TYPES = ("LATENT_PREVIEWER",)
|
||||
FUNCTION = "make_previewer"
|
||||
|
||||
CATEGORY = "latent/previewer"
|
||||
|
||||
def make_previewer(self, taesd):
|
||||
return (TAESDPreviewerImpl(taesd), )
|
||||
|
||||
class SaveLatent:
|
||||
def __init__(self):
|
||||
self.output_dir = folder_paths.get_output_directory()
|
||||
|
@ -524,26 +483,6 @@ class VAELoader:
|
|||
vae = comfy.sd.VAE(ckpt_path=vae_path)
|
||||
return (vae,)
|
||||
|
||||
class TAESDLoader:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
model_list = folder_paths.get_filename_list("taesd")
|
||||
return {"required": {
|
||||
"encoder_name": (model_list, { "default": "taesd_encoder.pth" }),
|
||||
"decoder_name": (model_list, { "default": "taesd_decoder.pth" })
|
||||
}}
|
||||
RETURN_TYPES = ("TAESD",)
|
||||
FUNCTION = "load_taesd"
|
||||
|
||||
CATEGORY = "loaders"
|
||||
|
||||
def load_taesd(self, encoder_name, decoder_name):
|
||||
device = comfy.model_management.get_torch_device()
|
||||
encoder_path = folder_paths.get_full_path("taesd", encoder_name)
|
||||
decoder_path = folder_paths.get_full_path("taesd", decoder_name)
|
||||
taesd = TAESD(encoder_path, decoder_path).to(device)
|
||||
return (taesd,)
|
||||
|
||||
class ControlNetLoader:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
|
@ -1039,7 +978,7 @@ def decode_latent_to_preview_image(previewer, device, preview_format, x0):
|
|||
return preview_bytes
|
||||
|
||||
|
||||
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, previewer=None):
|
||||
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
|
||||
device = comfy.model_management.get_torch_device()
|
||||
latent_image = latent["samples"]
|
||||
|
||||
|
@ -1057,6 +996,17 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive,
|
|||
if preview_format not in ["JPEG", "PNG"]:
|
||||
preview_format = "JPEG"
|
||||
|
||||
previewer = None
|
||||
if not args.disable_previews:
|
||||
# TODO previewer methods
|
||||
encoder_path = folder_paths.get_full_path("taesd", "taesd_encoder.pth")
|
||||
decoder_path = folder_paths.get_full_path("taesd", "taesd_decoder.pth")
|
||||
if encoder_path and decoder_path:
|
||||
taesd = TAESD(encoder_path, decoder_path).to(device)
|
||||
previewer = TAESDPreviewerImpl(taesd)
|
||||
else:
|
||||
print("Warning: TAESD previews enabled, but could not find models/taesd/taesd_encoder.pth and models/taesd/taesd_decoder.pth")
|
||||
|
||||
pbar = comfy.utils.ProgressBar(steps)
|
||||
def callback(step, x0, x, total_steps):
|
||||
preview_bytes = None
|
||||
|
@ -1085,18 +1035,16 @@ class KSampler:
|
|||
"negative": ("CONDITIONING", ),
|
||||
"latent_image": ("LATENT", ),
|
||||
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
},
|
||||
"optional": {
|
||||
"previewer": ("LATENT_PREVIEWER",)
|
||||
}}
|
||||
}
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "sample"
|
||||
|
||||
CATEGORY = "sampling"
|
||||
|
||||
def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, previewer=None):
|
||||
return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, previewer=previewer)
|
||||
def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
|
||||
return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
|
||||
|
||||
class KSamplerAdvanced:
|
||||
@classmethod
|
||||
|
@ -1115,24 +1063,22 @@ class KSamplerAdvanced:
|
|||
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
|
||||
"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
|
||||
"return_with_leftover_noise": (["disable", "enable"], ),
|
||||
},
|
||||
"optional": {
|
||||
"previewer": ("LATENT_PREVIEWER",)
|
||||
}}
|
||||
}
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "sample"
|
||||
|
||||
CATEGORY = "sampling"
|
||||
|
||||
def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0, previewer=None):
|
||||
def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
|
||||
force_full_denoise = True
|
||||
if return_with_leftover_noise == "enable":
|
||||
force_full_denoise = False
|
||||
disable_noise = False
|
||||
if add_noise == "disable":
|
||||
disable_noise = True
|
||||
return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise, previewer=previewer)
|
||||
return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
|
||||
|
||||
class SaveImage:
|
||||
def __init__(self):
|
||||
|
@ -1391,10 +1337,6 @@ NODE_CLASS_MAPPINGS = {
|
|||
"VAEEncode": VAEEncode,
|
||||
"VAEEncodeForInpaint": VAEEncodeForInpaint,
|
||||
"VAELoader": VAELoader,
|
||||
"TAESDDecode": TAESDDecode,
|
||||
"TAESDEncode": TAESDEncode,
|
||||
"TAESDPreviewer": TAESDPreviewer,
|
||||
"TAESDLoader": TAESDLoader,
|
||||
"EmptyLatentImage": EmptyLatentImage,
|
||||
"LatentUpscale": LatentUpscale,
|
||||
"LatentUpscaleBy": LatentUpscaleBy,
|
||||
|
@ -1449,8 +1391,6 @@ NODE_DISPLAY_NAME_MAPPINGS = {
|
|||
"CheckpointLoader": "Load Checkpoint (With Config)",
|
||||
"CheckpointLoaderSimple": "Load Checkpoint",
|
||||
"VAELoader": "Load VAE",
|
||||
"TAESDLoader": "Load TAESD",
|
||||
"TAESDPreviewer": "TAESD Previewer",
|
||||
"LoraLoader": "Load LoRA",
|
||||
"CLIPLoader": "Load CLIP",
|
||||
"ControlNetLoader": "Load ControlNet Model",
|
||||
|
@ -1473,8 +1413,6 @@ NODE_DISPLAY_NAME_MAPPINGS = {
|
|||
"SetLatentNoiseMask": "Set Latent Noise Mask",
|
||||
"VAEDecode": "VAE Decode",
|
||||
"VAEEncode": "VAE Encode",
|
||||
"TAESDDecode": "TAESD Decode",
|
||||
"TAESDEncode": "TAESD Encode",
|
||||
"LatentRotate": "Rotate Latent",
|
||||
"LatentFlip": "Flip Latent",
|
||||
"LatentCrop": "Crop Latent",
|
||||
|
|
|
@ -382,7 +382,7 @@ export class ComfyApp {
|
|||
this.images = output.images;
|
||||
imagesChanged = true;
|
||||
imgURLs = imgURLs.concat(output.images.map(params => {
|
||||
return "/view?" + new URLSearchParams(src).toString() + app.getPreviewFormatParam();
|
||||
return "/view?" + new URLSearchParams(params).toString() + app.getPreviewFormatParam();
|
||||
}))
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue