Refactor diffusers model convert code to be able to reuse it.
This commit is contained in:
parent
f3ac938b4a
commit
0fc483dcfd
|
@ -1,14 +1,5 @@
|
|||
import json
|
||||
import os
|
||||
import yaml
|
||||
|
||||
import folder_paths
|
||||
from comfy.ldm.util import instantiate_from_config
|
||||
from comfy.sd import ModelPatcher, load_model_weights, CLIP, VAE
|
||||
import os.path as osp
|
||||
import re
|
||||
import torch
|
||||
from safetensors.torch import load_file, save_file
|
||||
|
||||
# conversion code from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py
|
||||
|
||||
|
@ -262,101 +253,3 @@ def convert_text_enc_state_dict(text_enc_dict):
|
|||
return text_enc_dict
|
||||
|
||||
|
||||
def load_diffusers(model_path, fp16=True, output_vae=True, output_clip=True, embedding_directory=None):
|
||||
diffusers_unet_conf = json.load(open(osp.join(model_path, "unet/config.json")))
|
||||
diffusers_scheduler_conf = json.load(open(osp.join(model_path, "scheduler/scheduler_config.json")))
|
||||
|
||||
# magic
|
||||
v2 = diffusers_unet_conf["sample_size"] == 96
|
||||
if 'prediction_type' in diffusers_scheduler_conf:
|
||||
v_pred = diffusers_scheduler_conf['prediction_type'] == 'v_prediction'
|
||||
|
||||
if v2:
|
||||
if v_pred:
|
||||
config_path = folder_paths.get_full_path("configs", 'v2-inference-v.yaml')
|
||||
else:
|
||||
config_path = folder_paths.get_full_path("configs", 'v2-inference.yaml')
|
||||
else:
|
||||
config_path = folder_paths.get_full_path("configs", 'v1-inference.yaml')
|
||||
|
||||
with open(config_path, 'r') as stream:
|
||||
config = yaml.safe_load(stream)
|
||||
|
||||
model_config_params = config['model']['params']
|
||||
clip_config = model_config_params['cond_stage_config']
|
||||
scale_factor = model_config_params['scale_factor']
|
||||
vae_config = model_config_params['first_stage_config']
|
||||
vae_config['scale_factor'] = scale_factor
|
||||
model_config_params["unet_config"]["params"]["use_fp16"] = fp16
|
||||
|
||||
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors")
|
||||
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors")
|
||||
text_enc_path = osp.join(model_path, "text_encoder", "model.safetensors")
|
||||
|
||||
# Load models from safetensors if it exists, if it doesn't pytorch
|
||||
if osp.exists(unet_path):
|
||||
unet_state_dict = load_file(unet_path, device="cpu")
|
||||
else:
|
||||
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
|
||||
unet_state_dict = torch.load(unet_path, map_location="cpu")
|
||||
|
||||
if osp.exists(vae_path):
|
||||
vae_state_dict = load_file(vae_path, device="cpu")
|
||||
else:
|
||||
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
|
||||
vae_state_dict = torch.load(vae_path, map_location="cpu")
|
||||
|
||||
if osp.exists(text_enc_path):
|
||||
text_enc_dict = load_file(text_enc_path, device="cpu")
|
||||
else:
|
||||
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
|
||||
text_enc_dict = torch.load(text_enc_path, map_location="cpu")
|
||||
|
||||
# Convert the UNet model
|
||||
unet_state_dict = convert_unet_state_dict(unet_state_dict)
|
||||
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
|
||||
|
||||
# Convert the VAE model
|
||||
vae_state_dict = convert_vae_state_dict(vae_state_dict)
|
||||
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
|
||||
|
||||
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
|
||||
is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict
|
||||
|
||||
if is_v20_model:
|
||||
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
|
||||
text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()}
|
||||
text_enc_dict = convert_text_enc_state_dict_v20(text_enc_dict)
|
||||
text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()}
|
||||
else:
|
||||
text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
|
||||
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
|
||||
|
||||
# Put together new checkpoint
|
||||
sd = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
|
||||
|
||||
clip = None
|
||||
vae = None
|
||||
|
||||
class WeightsLoader(torch.nn.Module):
|
||||
pass
|
||||
|
||||
w = WeightsLoader()
|
||||
load_state_dict_to = []
|
||||
if output_vae:
|
||||
vae = VAE(scale_factor=scale_factor, config=vae_config)
|
||||
w.first_stage_model = vae.first_stage_model
|
||||
load_state_dict_to = [w]
|
||||
|
||||
if output_clip:
|
||||
clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
|
||||
w.cond_stage_model = clip.cond_stage_model
|
||||
load_state_dict_to = [w]
|
||||
|
||||
model = instantiate_from_config(config["model"])
|
||||
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
|
||||
|
||||
if fp16:
|
||||
model = model.half()
|
||||
|
||||
return ModelPatcher(model), clip, vae
|
||||
|
|
|
@ -0,0 +1,111 @@
|
|||
import json
|
||||
import os
|
||||
import yaml
|
||||
|
||||
import folder_paths
|
||||
from comfy.ldm.util import instantiate_from_config
|
||||
from comfy.sd import ModelPatcher, load_model_weights, CLIP, VAE
|
||||
import os.path as osp
|
||||
import re
|
||||
import torch
|
||||
from safetensors.torch import load_file, save_file
|
||||
import diffusers_convert
|
||||
|
||||
def load_diffusers(model_path, fp16=True, output_vae=True, output_clip=True, embedding_directory=None):
|
||||
diffusers_unet_conf = json.load(open(osp.join(model_path, "unet/config.json")))
|
||||
diffusers_scheduler_conf = json.load(open(osp.join(model_path, "scheduler/scheduler_config.json")))
|
||||
|
||||
# magic
|
||||
v2 = diffusers_unet_conf["sample_size"] == 96
|
||||
if 'prediction_type' in diffusers_scheduler_conf:
|
||||
v_pred = diffusers_scheduler_conf['prediction_type'] == 'v_prediction'
|
||||
|
||||
if v2:
|
||||
if v_pred:
|
||||
config_path = folder_paths.get_full_path("configs", 'v2-inference-v.yaml')
|
||||
else:
|
||||
config_path = folder_paths.get_full_path("configs", 'v2-inference.yaml')
|
||||
else:
|
||||
config_path = folder_paths.get_full_path("configs", 'v1-inference.yaml')
|
||||
|
||||
with open(config_path, 'r') as stream:
|
||||
config = yaml.safe_load(stream)
|
||||
|
||||
model_config_params = config['model']['params']
|
||||
clip_config = model_config_params['cond_stage_config']
|
||||
scale_factor = model_config_params['scale_factor']
|
||||
vae_config = model_config_params['first_stage_config']
|
||||
vae_config['scale_factor'] = scale_factor
|
||||
model_config_params["unet_config"]["params"]["use_fp16"] = fp16
|
||||
|
||||
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors")
|
||||
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors")
|
||||
text_enc_path = osp.join(model_path, "text_encoder", "model.safetensors")
|
||||
|
||||
# Load models from safetensors if it exists, if it doesn't pytorch
|
||||
if osp.exists(unet_path):
|
||||
unet_state_dict = load_file(unet_path, device="cpu")
|
||||
else:
|
||||
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
|
||||
unet_state_dict = torch.load(unet_path, map_location="cpu")
|
||||
|
||||
if osp.exists(vae_path):
|
||||
vae_state_dict = load_file(vae_path, device="cpu")
|
||||
else:
|
||||
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
|
||||
vae_state_dict = torch.load(vae_path, map_location="cpu")
|
||||
|
||||
if osp.exists(text_enc_path):
|
||||
text_enc_dict = load_file(text_enc_path, device="cpu")
|
||||
else:
|
||||
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
|
||||
text_enc_dict = torch.load(text_enc_path, map_location="cpu")
|
||||
|
||||
# Convert the UNet model
|
||||
unet_state_dict = diffusers_convert.convert_unet_state_dict(unet_state_dict)
|
||||
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
|
||||
|
||||
# Convert the VAE model
|
||||
vae_state_dict = diffusers_convert.convert_vae_state_dict(vae_state_dict)
|
||||
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
|
||||
|
||||
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
|
||||
is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict
|
||||
|
||||
if is_v20_model:
|
||||
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
|
||||
text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()}
|
||||
text_enc_dict = diffusers_convert.convert_text_enc_state_dict_v20(text_enc_dict)
|
||||
text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()}
|
||||
else:
|
||||
text_enc_dict = diffusers_convert.convert_text_enc_state_dict(text_enc_dict)
|
||||
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
|
||||
|
||||
# Put together new checkpoint
|
||||
sd = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
|
||||
|
||||
clip = None
|
||||
vae = None
|
||||
|
||||
class WeightsLoader(torch.nn.Module):
|
||||
pass
|
||||
|
||||
w = WeightsLoader()
|
||||
load_state_dict_to = []
|
||||
if output_vae:
|
||||
vae = VAE(scale_factor=scale_factor, config=vae_config)
|
||||
w.first_stage_model = vae.first_stage_model
|
||||
load_state_dict_to = [w]
|
||||
|
||||
if output_clip:
|
||||
clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
|
||||
w.cond_stage_model = clip.cond_stage_model
|
||||
load_state_dict_to = [w]
|
||||
|
||||
model = instantiate_from_config(config["model"])
|
||||
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
|
||||
|
||||
if fp16:
|
||||
model = model.half()
|
||||
|
||||
return ModelPatcher(model), clip, vae
|
4
nodes.py
4
nodes.py
|
@ -17,7 +17,7 @@ import safetensors.torch
|
|||
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
|
||||
|
||||
|
||||
import comfy.diffusers_convert
|
||||
import comfy.diffusers_load
|
||||
import comfy.samplers
|
||||
import comfy.sample
|
||||
import comfy.sd
|
||||
|
@ -377,7 +377,7 @@ class DiffusersLoader:
|
|||
model_path = path
|
||||
break
|
||||
|
||||
return comfy.diffusers_convert.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
||||
return comfy.diffusers_load.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
||||
|
||||
|
||||
class unCLIPCheckpointLoader:
|
||||
|
|
Loading…
Reference in New Issue