Implement Differential Diffusion (#2876)
* Implement Differential Diffusion * Cleanup. * Fix. * Masks should be applied at full strength. * Fix colors. * Register the node. * Cleaner code. * Fix issue with getting unipc sampler. * Adjust thresholds. * Switch to linear thresholds. * Only calculate nearest_idx on valid thresholds.
This commit is contained in:
parent
1abf8374ec
commit
727021bdea
|
@ -277,6 +277,8 @@ class KSamplerX0Inpaint(torch.nn.Module):
|
|||
self.inner_model = model
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, model_options={}, seed=None):
|
||||
if denoise_mask is not None:
|
||||
if "denoise_mask_function" in model_options:
|
||||
denoise_mask = model_options["denoise_mask_function"](sigma, denoise_mask)
|
||||
latent_mask = 1. - denoise_mask
|
||||
x = x * denoise_mask + self.inner_model.inner_model.model_sampling.noise_scaling(sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1)), self.noise, self.latent_image) * latent_mask
|
||||
out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, model_options=model_options, seed=seed)
|
||||
|
|
|
@ -0,0 +1,97 @@
|
|||
# code adapted from https://github.com/exx8/differential-diffusion
|
||||
|
||||
import torch
|
||||
import inspect
|
||||
|
||||
class DifferentialDiffusion():
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"model": ("MODEL", ),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "apply"
|
||||
CATEGORY = "_for_testing"
|
||||
INIT = False
|
||||
|
||||
@classmethod
|
||||
def IS_CHANGED(s, *args, **kwargs):
|
||||
DifferentialDiffusion.INIT = s.INIT = True
|
||||
return ""
|
||||
|
||||
def __init__(self) -> None:
|
||||
DifferentialDiffusion.INIT = False
|
||||
self.sigmas: torch.Tensor = None
|
||||
self.thresholds: torch.Tensor = None
|
||||
self.mask_i = None
|
||||
self.valid_sigmas = False
|
||||
self.varying_sigmas_samplers = ["dpmpp_2s", "dpmpp_sde", "dpm_2", "heun", "restart"]
|
||||
|
||||
def apply(self, model):
|
||||
model = model.clone()
|
||||
model.model_options["denoise_mask_function"] = self.forward
|
||||
return (model,)
|
||||
|
||||
def init_sigmas(self, sigma: torch.Tensor, denoise_mask: torch.Tensor):
|
||||
self.__init__()
|
||||
self.sigmas, sampler = find_outer_instance("sigmas", callback=get_sigmas_and_sampler) or (None, "")
|
||||
self.valid_sigmas = not ("sample_" not in sampler or any(s in sampler for s in self.varying_sigmas_samplers)) or "generic" in sampler
|
||||
if self.sigmas is None:
|
||||
self.sigmas = sigma[:1].repeat(2)
|
||||
self.sigmas[-1].zero_()
|
||||
self.sigmas_min = self.sigmas.min()
|
||||
self.sigmas_max = self.sigmas.max()
|
||||
self.thresholds = torch.linspace(1, 0, self.sigmas.shape[0], dtype=sigma.dtype, device=sigma.device)
|
||||
self.thresholds_min_len = self.thresholds.shape[0] - 1
|
||||
if self.valid_sigmas:
|
||||
thresholds = self.thresholds[:-1].reshape(-1, 1, 1, 1, 1)
|
||||
mask = denoise_mask.unsqueeze(0)
|
||||
mask = (mask >= thresholds).to(denoise_mask.dtype)
|
||||
self.mask_i = iter(mask)
|
||||
|
||||
def forward(self, sigma: torch.Tensor, denoise_mask: torch.Tensor):
|
||||
if self.sigmas is None or DifferentialDiffusion.INIT:
|
||||
self.init_sigmas(sigma, denoise_mask)
|
||||
if self.valid_sigmas:
|
||||
try:
|
||||
return next(self.mask_i)
|
||||
except StopIteration:
|
||||
self.valid_sigmas = False
|
||||
if self.thresholds_min_len > 1:
|
||||
nearest_idx = (self.sigmas - sigma[0]).abs().argmin()
|
||||
if not self.thresholds_min_len > nearest_idx:
|
||||
nearest_idx = -2
|
||||
threshold = self.thresholds[nearest_idx]
|
||||
else:
|
||||
threshold = (sigma[0] - self.sigmas_min) / (self.sigmas_max - self.sigmas_min)
|
||||
return (denoise_mask >= threshold).to(denoise_mask.dtype)
|
||||
|
||||
def get_sigmas_and_sampler(frame, target):
|
||||
found = frame.f_locals[target]
|
||||
if isinstance(found, torch.Tensor) and found[-1] < 0.1:
|
||||
return found, frame.f_code.co_name
|
||||
return False
|
||||
|
||||
def find_outer_instance(target: str, target_type=None, callback=None):
|
||||
frame = inspect.currentframe()
|
||||
i = 0
|
||||
while frame and i < 100:
|
||||
if target in frame.f_locals:
|
||||
if callback is not None:
|
||||
res = callback(frame, target)
|
||||
if res:
|
||||
return res
|
||||
else:
|
||||
found = frame.f_locals[target]
|
||||
if isinstance(found, target_type):
|
||||
return found
|
||||
frame = frame.f_back
|
||||
i += 1
|
||||
return None
|
||||
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"DifferentialDiffusion": DifferentialDiffusion,
|
||||
}
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"DifferentialDiffusion": "Differential Diffusion",
|
||||
}
|
Loading…
Reference in New Issue