CLIPVisionEncode can now encode multiple images.
This commit is contained in:
parent
0cb6dac943
commit
9cc12c833d
|
@ -24,8 +24,8 @@ class ClipVisionModel():
|
|||
return self.model.load_state_dict(sd, strict=False)
|
||||
|
||||
def encode_image(self, image):
|
||||
img = torch.clip((255. * image[0]), 0, 255).round().int()
|
||||
inputs = self.processor(images=[img], return_tensors="pt")
|
||||
img = torch.clip((255. * image), 0, 255).round().int()
|
||||
inputs = self.processor(images=img, return_tensors="pt")
|
||||
outputs = self.model(**inputs)
|
||||
return outputs
|
||||
|
||||
|
|
|
@ -120,15 +120,15 @@ class SD21UNCLIP(BaseModel):
|
|||
weights = []
|
||||
noise_aug = []
|
||||
for unclip_cond in unclip_conditioning:
|
||||
adm_cond = unclip_cond["clip_vision_output"].image_embeds
|
||||
weight = unclip_cond["strength"]
|
||||
noise_augment = unclip_cond["noise_augmentation"]
|
||||
noise_level = round((self.noise_augmentor.max_noise_level - 1) * noise_augment)
|
||||
c_adm, noise_level_emb = self.noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
|
||||
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
|
||||
weights.append(weight)
|
||||
noise_aug.append(noise_augment)
|
||||
adm_inputs.append(adm_out)
|
||||
for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
|
||||
weight = unclip_cond["strength"]
|
||||
noise_augment = unclip_cond["noise_augmentation"]
|
||||
noise_level = round((self.noise_augmentor.max_noise_level - 1) * noise_augment)
|
||||
c_adm, noise_level_emb = self.noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
|
||||
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
|
||||
weights.append(weight)
|
||||
noise_aug.append(noise_augment)
|
||||
adm_inputs.append(adm_out)
|
||||
|
||||
if len(noise_aug) > 1:
|
||||
adm_out = torch.stack(adm_inputs).sum(0)
|
||||
|
|
2
nodes.py
2
nodes.py
|
@ -771,7 +771,7 @@ class StyleModelApply:
|
|||
CATEGORY = "conditioning/style_model"
|
||||
|
||||
def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
|
||||
cond = style_model.get_cond(clip_vision_output)
|
||||
cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
|
||||
c = []
|
||||
for t in conditioning:
|
||||
n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
|
||||
|
|
Loading…
Reference in New Issue