Add a SetLatentNoiseMask node.
LATENT is now a dict that can contain properties.
This commit is contained in:
parent
cef2cc3cb0
commit
d75003001a
78
nodes.py
78
nodes.py
|
@ -98,7 +98,7 @@ class VAEDecode:
|
|||
CATEGORY = "latent"
|
||||
|
||||
def decode(self, vae, samples):
|
||||
return (vae.decode(samples), )
|
||||
return (vae.decode(samples["samples"]), )
|
||||
|
||||
class VAEEncode:
|
||||
def __init__(self, device="cpu"):
|
||||
|
@ -117,7 +117,9 @@ class VAEEncode:
|
|||
y = (pixels.shape[2] // 64) * 64
|
||||
if pixels.shape[1] != x or pixels.shape[2] != y:
|
||||
pixels = pixels[:,:x,:y,:]
|
||||
return (vae.encode(pixels), )
|
||||
t = vae.encode(pixels[:,:,:,:3])
|
||||
|
||||
return ({"samples":t}, )
|
||||
|
||||
class CheckpointLoader:
|
||||
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
|
||||
|
@ -212,7 +214,7 @@ class EmptyLatentImage:
|
|||
|
||||
def generate(self, width, height, batch_size=1):
|
||||
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
|
||||
return (latent, )
|
||||
return ({"samples":latent}, )
|
||||
|
||||
def common_upscale(samples, width, height, upscale_method, crop):
|
||||
if crop == "center":
|
||||
|
@ -247,7 +249,8 @@ class LatentUpscale:
|
|||
CATEGORY = "latent"
|
||||
|
||||
def upscale(self, samples, upscale_method, width, height, crop):
|
||||
s = common_upscale(samples, width // 8, height // 8, upscale_method, crop)
|
||||
s = samples.copy()
|
||||
s["samples"] = common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
|
||||
return (s,)
|
||||
|
||||
class LatentRotate:
|
||||
|
@ -262,6 +265,7 @@ class LatentRotate:
|
|||
CATEGORY = "latent"
|
||||
|
||||
def rotate(self, samples, rotation):
|
||||
s = samples.copy()
|
||||
rotate_by = 0
|
||||
if rotation.startswith("90"):
|
||||
rotate_by = 1
|
||||
|
@ -270,7 +274,7 @@ class LatentRotate:
|
|||
elif rotation.startswith("270"):
|
||||
rotate_by = 3
|
||||
|
||||
s = torch.rot90(samples, k=rotate_by, dims=[3, 2])
|
||||
s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
|
||||
return (s,)
|
||||
|
||||
class LatentFlip:
|
||||
|
@ -285,12 +289,11 @@ class LatentFlip:
|
|||
CATEGORY = "latent"
|
||||
|
||||
def flip(self, samples, flip_method):
|
||||
s = samples.copy()
|
||||
if flip_method.startswith("x"):
|
||||
s = torch.flip(samples, dims=[2])
|
||||
s["samples"] = torch.flip(samples["samples"], dims=[2])
|
||||
elif flip_method.startswith("y"):
|
||||
s = torch.flip(samples, dims=[3])
|
||||
else:
|
||||
s = samples
|
||||
s["samples"] = torch.flip(samples["samples"], dims=[3])
|
||||
|
||||
return (s,)
|
||||
|
||||
|
@ -312,12 +315,15 @@ class LatentComposite:
|
|||
x = x // 8
|
||||
y = y // 8
|
||||
feather = feather // 8
|
||||
s = samples_to.clone()
|
||||
samples_out = samples_to.copy()
|
||||
s = samples_to["samples"].clone()
|
||||
samples_to = samples_to["samples"]
|
||||
samples_from = samples_from["samples"]
|
||||
if feather == 0:
|
||||
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
|
||||
else:
|
||||
s_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
|
||||
mask = torch.ones_like(s_from)
|
||||
samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
|
||||
mask = torch.ones_like(samples_from)
|
||||
for t in range(feather):
|
||||
if y != 0:
|
||||
mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))
|
||||
|
@ -330,7 +336,8 @@ class LatentComposite:
|
|||
mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
|
||||
rev_mask = torch.ones_like(mask) - mask
|
||||
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
|
||||
return (s,)
|
||||
samples_out["samples"] = s
|
||||
return (samples_out,)
|
||||
|
||||
class LatentCrop:
|
||||
@classmethod
|
||||
|
@ -347,6 +354,8 @@ class LatentCrop:
|
|||
CATEGORY = "latent"
|
||||
|
||||
def crop(self, samples, width, height, x, y):
|
||||
s = samples.copy()
|
||||
samples = samples['samples']
|
||||
x = x // 8
|
||||
y = y // 8
|
||||
|
||||
|
@ -370,15 +379,46 @@ class LatentCrop:
|
|||
#make sure size is always multiple of 64
|
||||
x, to_x = enforce_image_dim(x, to_x, samples.shape[3])
|
||||
y, to_y = enforce_image_dim(y, to_y, samples.shape[2])
|
||||
s = samples[:,:,y:to_y, x:to_x]
|
||||
s['samples'] = samples[:,:,y:to_y, x:to_x]
|
||||
return (s,)
|
||||
|
||||
def common_ksampler(device, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
|
||||
class SetLatentNoiseMask:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "samples": ("LATENT",),
|
||||
"mask": ("MASK",),
|
||||
}}
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "set_mask"
|
||||
|
||||
CATEGORY = "latent"
|
||||
|
||||
def set_mask(self, samples, mask):
|
||||
s = samples.copy()
|
||||
s["noise_mask"] = mask
|
||||
return (s,)
|
||||
|
||||
|
||||
def common_ksampler(device, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
|
||||
latent_image = latent["samples"]
|
||||
noise_mask = None
|
||||
|
||||
if disable_noise:
|
||||
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
|
||||
else:
|
||||
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu")
|
||||
|
||||
if "noise_mask" in latent:
|
||||
noise_mask = latent['noise_mask']
|
||||
print(noise_mask.shape, noise.shape)
|
||||
|
||||
noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear")
|
||||
noise_mask = noise_mask.floor()
|
||||
noise_mask = torch.ones_like(noise_mask) - noise_mask
|
||||
noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
|
||||
noise_mask = torch.cat([noise_mask] * noise.shape[0])
|
||||
noise_mask = noise_mask.to(device)
|
||||
|
||||
real_model = None
|
||||
if device != "cpu":
|
||||
model_management.load_model_gpu(model)
|
||||
|
@ -411,10 +451,11 @@ def common_ksampler(device, model, seed, steps, cfg, sampler_name, scheduler, po
|
|||
#other samplers
|
||||
pass
|
||||
|
||||
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise)
|
||||
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask)
|
||||
samples = samples.cpu()
|
||||
|
||||
return (samples, )
|
||||
out = latent.copy()
|
||||
out["samples"] = samples
|
||||
return (out, )
|
||||
|
||||
class KSampler:
|
||||
def __init__(self, device="cuda"):
|
||||
|
@ -589,6 +630,7 @@ NODE_CLASS_MAPPINGS = {
|
|||
"ConditioningCombine": ConditioningCombine,
|
||||
"ConditioningSetArea": ConditioningSetArea,
|
||||
"KSamplerAdvanced": KSamplerAdvanced,
|
||||
"SetLatentNoiseMask": SetLatentNoiseMask,
|
||||
"LatentComposite": LatentComposite,
|
||||
"LatentRotate": LatentRotate,
|
||||
"LatentFlip": LatentFlip,
|
||||
|
|
Loading…
Reference in New Issue