ComfyUI/nodes.py

1982 lines
73 KiB
Python
Raw Normal View History

2023-01-03 06:53:32 +00:00
import torch
import os
import sys
import json
import hashlib
import traceback
import math
import time
import random
2023-01-03 06:53:32 +00:00
from PIL import Image, ImageOps, ImageSequence
2023-01-03 06:53:32 +00:00
from PIL.PngImagePlugin import PngInfo
import numpy as np
2023-05-18 03:04:40 +00:00
import safetensors.torch
2023-01-03 06:53:32 +00:00
2023-03-06 19:41:42 +00:00
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
2023-01-03 06:53:32 +00:00
import comfy.diffusers_load
2023-01-03 06:53:32 +00:00
import comfy.samplers
import comfy.sample
2023-01-03 06:53:32 +00:00
import comfy.sd
2023-02-16 15:38:08 +00:00
import comfy.utils
import comfy.controlnet
2023-02-16 15:38:08 +00:00
import comfy.clip_vision
import comfy.model_management
from comfy.cli_args import args
2023-02-15 14:48:10 +00:00
import importlib
2023-01-03 06:53:32 +00:00
import folder_paths
import latent_preview
2023-06-05 23:39:56 +00:00
def before_node_execution():
comfy.model_management.throw_exception_if_processing_interrupted()
def interrupt_processing(value=True):
comfy.model_management.interrupt_current_processing(value)
MAX_RESOLUTION=8192
2023-01-03 06:53:32 +00:00
class CLIPTextEncode:
@classmethod
def INPUT_TYPES(s):
2023-03-03 18:28:34 +00:00
return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
2023-01-03 06:53:32 +00:00
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "encode"
2023-01-26 17:23:15 +00:00
CATEGORY = "conditioning"
2023-01-03 06:53:32 +00:00
def encode(self, clip, text):
tokens = clip.tokenize(text)
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
return ([[cond, {"pooled_output": pooled}]], )
class ConditioningCombine:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "combine"
2023-01-26 17:23:15 +00:00
CATEGORY = "conditioning"
def combine(self, conditioning_1, conditioning_2):
return (conditioning_1 + conditioning_2, )
class ConditioningAverage :
@classmethod
def INPUT_TYPES(s):
2023-04-30 21:28:55 +00:00
return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
"conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "addWeighted"
CATEGORY = "conditioning"
2023-04-30 21:28:55 +00:00
def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
out = []
2023-04-30 21:28:55 +00:00
if len(conditioning_from) > 1:
print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
cond_from = conditioning_from[0][0]
pooled_output_from = conditioning_from[0][1].get("pooled_output", None)
2023-04-30 21:28:55 +00:00
for i in range(len(conditioning_to)):
t1 = conditioning_to[i][0]
pooled_output_to = conditioning_to[i][1].get("pooled_output", pooled_output_from)
2023-04-30 21:28:55 +00:00
t0 = cond_from[:,:t1.shape[1]]
if t0.shape[1] < t1.shape[1]:
t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)
tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
t_to = conditioning_to[i][1].copy()
if pooled_output_from is not None and pooled_output_to is not None:
t_to["pooled_output"] = torch.mul(pooled_output_to, conditioning_to_strength) + torch.mul(pooled_output_from, (1.0 - conditioning_to_strength))
elif pooled_output_from is not None:
t_to["pooled_output"] = pooled_output_from
n = [tw, t_to]
out.append(n)
return (out, )
2023-07-05 21:40:22 +00:00
class ConditioningConcat:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"conditioning_to": ("CONDITIONING",),
"conditioning_from": ("CONDITIONING",),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "concat"
CATEGORY = "conditioning"
2023-07-05 21:40:22 +00:00
def concat(self, conditioning_to, conditioning_from):
out = []
if len(conditioning_from) > 1:
print("Warning: ConditioningConcat conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
cond_from = conditioning_from[0][0]
for i in range(len(conditioning_to)):
t1 = conditioning_to[i][0]
tw = torch.cat((t1, cond_from),1)
n = [tw, conditioning_to[i][1].copy()]
out.append(n)
return (out, )
class ConditioningSetArea:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
2023-05-02 18:16:27 +00:00
"width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "append"
2023-01-26 17:23:15 +00:00
CATEGORY = "conditioning"
def append(self, conditioning, width, height, x, y, strength):
2023-02-16 15:38:08 +00:00
c = []
for t in conditioning:
n = [t[0], t[1].copy()]
n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
n[1]['strength'] = strength
n[1]['set_area_to_bounds'] = False
2023-02-16 15:38:08 +00:00
c.append(n)
return (c, )
2023-01-03 06:53:32 +00:00
class ConditioningSetAreaPercentage:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"width": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
"height": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
"x": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
"y": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "append"
CATEGORY = "conditioning"
def append(self, conditioning, width, height, x, y, strength):
c = []
for t in conditioning:
n = [t[0], t[1].copy()]
n[1]['area'] = ("percentage", height, width, y, x)
n[1]['strength'] = strength
n[1]['set_area_to_bounds'] = False
c.append(n)
return (c, )
class ConditioningSetAreaStrength:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "append"
CATEGORY = "conditioning"
def append(self, conditioning, strength):
c = []
for t in conditioning:
n = [t[0], t[1].copy()]
n[1]['strength'] = strength
c.append(n)
return (c, )
class ConditioningSetMask:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"mask": ("MASK", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"set_cond_area": (["default", "mask bounds"],),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "append"
CATEGORY = "conditioning"
def append(self, conditioning, mask, set_cond_area, strength):
c = []
set_area_to_bounds = False
if set_cond_area != "default":
set_area_to_bounds = True
if len(mask.shape) < 3:
mask = mask.unsqueeze(0)
for t in conditioning:
n = [t[0], t[1].copy()]
_, h, w = mask.shape
n[1]['mask'] = mask
n[1]['set_area_to_bounds'] = set_area_to_bounds
n[1]['mask_strength'] = strength
c.append(n)
return (c, )
class ConditioningZeroOut:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", )}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "zero_out"
CATEGORY = "advanced/conditioning"
def zero_out(self, conditioning):
c = []
for t in conditioning:
d = t[1].copy()
if "pooled_output" in d:
d["pooled_output"] = torch.zeros_like(d["pooled_output"])
n = [torch.zeros_like(t[0]), d]
c.append(n)
return (c, )
class ConditioningSetTimestepRange:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "set_range"
CATEGORY = "advanced/conditioning"
def set_range(self, conditioning, start, end):
c = []
for t in conditioning:
d = t[1].copy()
d['start_percent'] = start
d['end_percent'] = end
n = [t[0], d]
c.append(n)
return (c, )
2023-01-03 06:53:32 +00:00
class VAEDecode:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "decode"
2023-01-26 17:23:15 +00:00
CATEGORY = "latent"
2023-01-03 06:53:32 +00:00
def decode(self, vae, samples):
return (vae.decode(samples["samples"]), )
2023-01-03 06:53:32 +00:00
class VAEDecodeTiled:
@classmethod
def INPUT_TYPES(s):
return {"required": {"samples": ("LATENT", ), "vae": ("VAE", ),
2023-08-31 18:26:16 +00:00
"tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "decode"
CATEGORY = "_for_testing"
def decode(self, vae, samples, tile_size):
return (vae.decode_tiled(samples["samples"], tile_x=tile_size // 8, tile_y=tile_size // 8, ), )
2023-01-03 06:53:32 +00:00
class VAEEncode:
@classmethod
def INPUT_TYPES(s):
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "encode"
2023-01-26 17:23:15 +00:00
CATEGORY = "latent"
2023-05-02 18:16:27 +00:00
@staticmethod
def vae_encode_crop_pixels(pixels):
x = (pixels.shape[1] // 8) * 8
y = (pixels.shape[2] // 8) * 8
if pixels.shape[1] != x or pixels.shape[2] != y:
2023-05-02 18:16:27 +00:00
x_offset = (pixels.shape[1] % 8) // 2
y_offset = (pixels.shape[2] % 8) // 2
pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
return pixels
2023-05-02 18:16:27 +00:00
def encode(self, vae, pixels):
pixels = self.vae_encode_crop_pixels(pixels)
t = vae.encode(pixels[:,:,:,:3])
return ({"samples":t}, )
2023-01-03 06:53:32 +00:00
2023-03-11 20:28:15 +00:00
class VAEEncodeTiled:
@classmethod
def INPUT_TYPES(s):
return {"required": {"pixels": ("IMAGE", ), "vae": ("VAE", ),
"tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
}}
2023-03-11 20:28:15 +00:00
RETURN_TYPES = ("LATENT",)
FUNCTION = "encode"
CATEGORY = "_for_testing"
def encode(self, vae, pixels, tile_size):
2023-05-02 18:16:27 +00:00
pixels = VAEEncode.vae_encode_crop_pixels(pixels)
t = vae.encode_tiled(pixels[:,:,:,:3], tile_x=tile_size, tile_y=tile_size, )
2023-03-11 20:28:15 +00:00
return ({"samples":t}, )
2023-05-02 18:16:27 +00:00
class VAEEncodeForInpaint:
@classmethod
def INPUT_TYPES(s):
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "encode"
CATEGORY = "latent/inpaint"
def encode(self, vae, pixels, mask, grow_mask_by=6):
2023-05-02 18:16:27 +00:00
x = (pixels.shape[1] // 8) * 8
y = (pixels.shape[2] // 8) * 8
2023-04-25 05:12:40 +00:00
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
2023-02-27 17:02:23 +00:00
pixels = pixels.clone()
if pixels.shape[1] != x or pixels.shape[2] != y:
2023-05-02 18:16:27 +00:00
x_offset = (pixels.shape[1] % 8) // 2
y_offset = (pixels.shape[2] % 8) // 2
pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
2023-02-27 17:02:23 +00:00
#grow mask by a few pixels to keep things seamless in latent space
if grow_mask_by == 0:
mask_erosion = mask
else:
kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
padding = math.ceil((grow_mask_by - 1) / 2)
mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)
m = (1.0 - mask.round()).squeeze(1)
for i in range(3):
pixels[:,:,:,i] -= 0.5
2023-02-27 17:02:23 +00:00
pixels[:,:,:,i] *= m
pixels[:,:,:,i] += 0.5
t = vae.encode(pixels)
2023-04-25 05:12:40 +00:00
return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
2023-01-03 06:53:32 +00:00
class InpaintModelConditioning:
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"vae": ("VAE", ),
"pixels": ("IMAGE", ),
"mask": ("MASK", ),
}}
RETURN_TYPES = ("CONDITIONING","CONDITIONING","LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
CATEGORY = "conditioning/inpaint"
def encode(self, positive, negative, pixels, vae, mask):
x = (pixels.shape[1] // 8) * 8
y = (pixels.shape[2] // 8) * 8
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
orig_pixels = pixels
pixels = orig_pixels.clone()
if pixels.shape[1] != x or pixels.shape[2] != y:
x_offset = (pixels.shape[1] % 8) // 2
y_offset = (pixels.shape[2] % 8) // 2
pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
m = (1.0 - mask.round()).squeeze(1)
for i in range(3):
pixels[:,:,:,i] -= 0.5
pixels[:,:,:,i] *= m
pixels[:,:,:,i] += 0.5
concat_latent = vae.encode(pixels)
orig_latent = vae.encode(orig_pixels)
out_latent = {}
out_latent["samples"] = orig_latent
out_latent["noise_mask"] = mask
out = []
for conditioning in [positive, negative]:
c = []
for t in conditioning:
d = t[1].copy()
d["concat_latent_image"] = concat_latent
d["concat_mask"] = mask
n = [t[0], d]
c.append(n)
out.append(c)
return (out[0], out[1], out_latent)
class SaveLatent:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT", ),
"filename_prefix": ("STRING", {"default": "latents/ComfyUI"})},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ()
FUNCTION = "save"
OUTPUT_NODE = True
CATEGORY = "_for_testing"
def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
# support save metadata for latent sharing
prompt_info = ""
if prompt is not None:
prompt_info = json.dumps(prompt)
metadata = None
if not args.disable_metadata:
metadata = {"prompt": prompt_info}
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata[x] = json.dumps(extra_pnginfo[x])
file = f"{filename}_{counter:05}_.latent"
results = list()
results.append({
"filename": file,
"subfolder": subfolder,
"type": "output"
})
file = os.path.join(full_output_folder, file)
2023-05-18 03:04:40 +00:00
output = {}
output["latent_tensor"] = samples["samples"]
output["latent_format_version_0"] = torch.tensor([])
2023-05-18 03:04:40 +00:00
comfy.utils.save_torch_file(output, file, metadata=metadata)
return { "ui": { "latents": results } }
class LoadLatent:
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
return {"required": {"latent": [sorted(files), ]}, }
CATEGORY = "_for_testing"
RETURN_TYPES = ("LATENT", )
FUNCTION = "load"
def load(self, latent):
latent_path = folder_paths.get_annotated_filepath(latent)
latent = safetensors.torch.load_file(latent_path, device="cpu")
multiplier = 1.0
if "latent_format_version_0" not in latent:
multiplier = 1.0 / 0.18215
samples = {"samples": latent["latent_tensor"].float() * multiplier}
2023-05-18 03:04:40 +00:00
return (samples, )
@classmethod
def IS_CHANGED(s, latent):
image_path = folder_paths.get_annotated_filepath(latent)
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()
@classmethod
def VALIDATE_INPUTS(s, latent):
if not folder_paths.exists_annotated_filepath(latent):
return "Invalid latent file: {}".format(latent)
return True
2023-01-03 06:53:32 +00:00
class CheckpointLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
"ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
2023-01-03 06:53:32 +00:00
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
FUNCTION = "load_checkpoint"
2023-04-05 02:48:11 +00:00
CATEGORY = "advanced/loaders"
2023-01-26 17:23:15 +00:00
2023-01-03 06:53:32 +00:00
def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
config_path = folder_paths.get_full_path("configs", config_name)
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
2023-03-18 07:08:43 +00:00
return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
2023-01-03 06:53:32 +00:00
class CheckpointLoaderSimple:
@classmethod
def INPUT_TYPES(s):
return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
}}
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
FUNCTION = "load_checkpoint"
CATEGORY = "loaders"
def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
2023-03-18 07:08:43 +00:00
out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
return out[:3]
2023-04-06 06:57:31 +00:00
class DiffusersLoader:
@classmethod
def INPUT_TYPES(cls):
paths = []
2023-04-07 05:02:26 +00:00
for search_path in folder_paths.get_folder_paths("diffusers"):
2023-04-07 04:48:58 +00:00
if os.path.exists(search_path):
for root, subdir, files in os.walk(search_path, followlinks=True):
if "model_index.json" in files:
paths.append(os.path.relpath(root, start=search_path))
return {"required": {"model_path": (paths,), }}
2023-04-06 06:57:31 +00:00
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
FUNCTION = "load_checkpoint"
CATEGORY = "advanced/loaders/deprecated"
2023-04-06 06:57:31 +00:00
def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
2023-04-07 05:02:26 +00:00
for search_path in folder_paths.get_folder_paths("diffusers"):
if os.path.exists(search_path):
path = os.path.join(search_path, model_path)
if os.path.exists(path):
model_path = path
2023-04-07 05:02:26 +00:00
break
2023-08-30 16:55:07 +00:00
return comfy.diffusers_load.load_diffusers(model_path, output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
2023-04-06 06:57:31 +00:00
class unCLIPCheckpointLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
}}
RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
FUNCTION = "load_checkpoint"
2023-04-05 02:48:11 +00:00
CATEGORY = "loaders"
def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
return out
class CLIPSetLastLayer:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip": ("CLIP", ),
"stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "set_last_layer"
CATEGORY = "conditioning"
def set_last_layer(self, clip, stop_at_clip_layer):
clip = clip.clone()
clip.clip_layer(stop_at_clip_layer)
return (clip,)
class LoraLoader:
def __init__(self):
self.loaded_lora = None
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"clip": ("CLIP", ),
"lora_name": (folder_paths.get_filename_list("loras"), ),
2023-09-20 21:58:54 +00:00
"strength_model": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}),
"strength_clip": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL", "CLIP")
FUNCTION = "load_lora"
CATEGORY = "loaders"
def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
if strength_model == 0 and strength_clip == 0:
return (model, clip)
lora_path = folder_paths.get_full_path("loras", lora_name)
lora = None
if self.loaded_lora is not None:
if self.loaded_lora[0] == lora_path:
lora = self.loaded_lora[1]
else:
temp = self.loaded_lora
self.loaded_lora = None
del temp
if lora is None:
lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
self.loaded_lora = (lora_path, lora)
model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
return (model_lora, clip_lora)
class LoraLoaderModelOnly(LoraLoader):
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"lora_name": (folder_paths.get_filename_list("loras"), ),
"strength_model": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "load_lora_model_only"
def load_lora_model_only(self, model, lora_name, strength_model):
return (self.load_lora(model, None, lora_name, strength_model, 0)[0],)
2023-01-03 06:53:32 +00:00
class VAELoader:
@staticmethod
def vae_list():
vaes = folder_paths.get_filename_list("vae")
approx_vaes = folder_paths.get_filename_list("vae_approx")
sdxl_taesd_enc = False
sdxl_taesd_dec = False
sd1_taesd_enc = False
sd1_taesd_dec = False
for v in approx_vaes:
if v.startswith("taesd_decoder."):
sd1_taesd_dec = True
elif v.startswith("taesd_encoder."):
sd1_taesd_enc = True
elif v.startswith("taesdxl_decoder."):
sdxl_taesd_dec = True
elif v.startswith("taesdxl_encoder."):
sdxl_taesd_enc = True
if sd1_taesd_dec and sd1_taesd_enc:
vaes.append("taesd")
if sdxl_taesd_dec and sdxl_taesd_enc:
vaes.append("taesdxl")
return vaes
@staticmethod
def load_taesd(name):
sd = {}
approx_vaes = folder_paths.get_filename_list("vae_approx")
encoder = next(filter(lambda a: a.startswith("{}_encoder.".format(name)), approx_vaes))
decoder = next(filter(lambda a: a.startswith("{}_decoder.".format(name)), approx_vaes))
enc = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", encoder))
for k in enc:
sd["taesd_encoder.{}".format(k)] = enc[k]
dec = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", decoder))
for k in dec:
sd["taesd_decoder.{}".format(k)] = dec[k]
if name == "taesd":
sd["vae_scale"] = torch.tensor(0.18215)
elif name == "taesdxl":
sd["vae_scale"] = torch.tensor(0.13025)
return sd
2023-01-03 06:53:32 +00:00
@classmethod
def INPUT_TYPES(s):
return {"required": { "vae_name": (s.vae_list(), )}}
2023-01-03 06:53:32 +00:00
RETURN_TYPES = ("VAE",)
FUNCTION = "load_vae"
2023-01-26 17:23:15 +00:00
CATEGORY = "loaders"
2023-01-03 06:53:32 +00:00
#TODO: scale factor?
def load_vae(self, vae_name):
if vae_name in ["taesd", "taesdxl"]:
sd = self.load_taesd(vae_name)
else:
vae_path = folder_paths.get_full_path("vae", vae_name)
sd = comfy.utils.load_torch_file(vae_path)
2023-10-17 18:51:51 +00:00
vae = comfy.sd.VAE(sd=sd)
2023-01-03 06:53:32 +00:00
return (vae,)
2023-02-16 15:38:08 +00:00
class ControlNetLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
2023-02-16 15:38:08 +00:00
RETURN_TYPES = ("CONTROL_NET",)
FUNCTION = "load_controlnet"
CATEGORY = "loaders"
def load_controlnet(self, control_net_name):
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
controlnet = comfy.controlnet.load_controlnet(controlnet_path)
2023-02-16 15:38:08 +00:00
return (controlnet,)
2023-02-23 04:22:03 +00:00
class DiffControlNetLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
2023-02-23 04:22:03 +00:00
RETURN_TYPES = ("CONTROL_NET",)
FUNCTION = "load_controlnet"
CATEGORY = "loaders"
def load_controlnet(self, model, control_net_name):
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
controlnet = comfy.controlnet.load_controlnet(controlnet_path, model)
2023-02-23 04:22:03 +00:00
return (controlnet,)
2023-02-16 15:38:08 +00:00
class ControlNetApply:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"control_net": ("CONTROL_NET", ),
"image": ("IMAGE", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
}}
2023-02-16 15:38:08 +00:00
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "apply_controlnet"
CATEGORY = "conditioning"
def apply_controlnet(self, conditioning, control_net, image, strength):
if strength == 0:
return (conditioning, )
2023-02-16 15:38:08 +00:00
c = []
control_hint = image.movedim(-1,1)
for t in conditioning:
n = [t[0], t[1].copy()]
c_net = control_net.copy().set_cond_hint(control_hint, strength)
if 'control' in t[1]:
c_net.set_previous_controlnet(t[1]['control'])
n[1]['control'] = c_net
n[1]['control_apply_to_uncond'] = True
2023-02-16 15:38:08 +00:00
c.append(n)
return (c, )
class ControlNetApplyAdvanced:
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"control_net": ("CONTROL_NET", ),
"image": ("IMAGE", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
}}
RETURN_TYPES = ("CONDITIONING","CONDITIONING")
RETURN_NAMES = ("positive", "negative")
FUNCTION = "apply_controlnet"
CATEGORY = "conditioning"
def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent):
if strength == 0:
return (positive, negative)
control_hint = image.movedim(-1,1)
cnets = {}
out = []
for conditioning in [positive, negative]:
c = []
for t in conditioning:
d = t[1].copy()
prev_cnet = d.get('control', None)
if prev_cnet in cnets:
c_net = cnets[prev_cnet]
else:
c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent))
c_net.set_previous_controlnet(prev_cnet)
cnets[prev_cnet] = c_net
d['control'] = c_net
d['control_apply_to_uncond'] = False
n = [t[0], d]
c.append(n)
out.append(c)
return (out[0], out[1])
class UNETLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "unet_name": (folder_paths.get_filename_list("unet"), ),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "load_unet"
CATEGORY = "advanced/loaders"
def load_unet(self, unet_name):
unet_path = folder_paths.get_full_path("unet", unet_name)
model = comfy.sd.load_unet(unet_path)
return (model,)
class CLIPLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
2024-02-16 18:29:04 +00:00
"type": (["stable_diffusion", "stable_cascade"], ),
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "load_clip"
CATEGORY = "advanced/loaders"
2024-02-16 18:29:04 +00:00
def load_clip(self, clip_name, type="stable_diffusion"):
clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
if type == "stable_cascade":
clip_type = comfy.sd.CLIPType.STABLE_CASCADE
clip_path = folder_paths.get_full_path("clip", clip_name)
2024-02-16 18:29:04 +00:00
clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type)
return (clip,)
class DualCLIPLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"), ), "clip_name2": (folder_paths.get_filename_list("clip"), ),
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "load_clip"
CATEGORY = "advanced/loaders"
def load_clip(self, clip_name1, clip_name2):
clip_path1 = folder_paths.get_full_path("clip", clip_name1)
clip_path2 = folder_paths.get_full_path("clip", clip_name2)
clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"))
return (clip,)
class CLIPVisionLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
}}
RETURN_TYPES = ("CLIP_VISION",)
FUNCTION = "load_clip"
CATEGORY = "loaders"
def load_clip(self, clip_name):
clip_path = folder_paths.get_full_path("clip_vision", clip_name)
clip_vision = comfy.clip_vision.load(clip_path)
return (clip_vision,)
class CLIPVisionEncode:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_vision": ("CLIP_VISION",),
"image": ("IMAGE",)
}}
2023-03-06 06:30:17 +00:00
RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
FUNCTION = "encode"
CATEGORY = "conditioning"
def encode(self, clip_vision, image):
output = clip_vision.encode_image(image)
return (output,)
class StyleModelLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
RETURN_TYPES = ("STYLE_MODEL",)
FUNCTION = "load_style_model"
CATEGORY = "loaders"
def load_style_model(self, style_model_name):
style_model_path = folder_paths.get_full_path("style_models", style_model_name)
style_model = comfy.sd.load_style_model(style_model_path)
return (style_model,)
class StyleModelApply:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"style_model": ("STYLE_MODEL", ),
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "apply_stylemodel"
2023-03-06 06:30:17 +00:00
CATEGORY = "conditioning/style_model"
def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
c = []
for t in conditioning:
n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
c.append(n)
return (c, )
class unCLIPConditioning:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "apply_adm"
2023-04-05 02:48:11 +00:00
CATEGORY = "conditioning"
def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
if strength == 0:
return (conditioning, )
c = []
for t in conditioning:
o = t[1].copy()
x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
if "unclip_conditioning" in o:
o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
else:
o["unclip_conditioning"] = [x]
n = [t[0], o]
c.append(n)
return (c, )
2023-04-19 13:36:19 +00:00
class GLIGENLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}
RETURN_TYPES = ("GLIGEN",)
FUNCTION = "load_gligen"
2023-04-20 21:30:10 +00:00
CATEGORY = "loaders"
2023-04-19 13:36:19 +00:00
def load_gligen(self, gligen_name):
gligen_path = folder_paths.get_full_path("gligen", gligen_name)
gligen = comfy.sd.load_gligen(gligen_path)
return (gligen,)
class GLIGENTextBoxApply:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning_to": ("CONDITIONING", ),
"clip": ("CLIP", ),
"gligen_textbox_model": ("GLIGEN", ),
"text": ("STRING", {"multiline": True}),
"width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "append"
2023-04-20 21:30:10 +00:00
CATEGORY = "conditioning/gligen"
2023-04-19 13:36:19 +00:00
def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
c = []
cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
for t in conditioning_to:
n = [t[0], t[1].copy()]
position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
prev = []
if "gligen" in n[1]:
prev = n[1]['gligen'][2]
n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
c.append(n)
return (c, )
2023-01-03 06:53:32 +00:00
class EmptyLatentImage:
def __init__(self):
self.device = comfy.model_management.intermediate_device()
2023-01-03 06:53:32 +00:00
@classmethod
def INPUT_TYPES(s):
return {"required": { "width": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
2023-09-25 05:46:44 +00:00
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
2023-01-03 06:53:32 +00:00
RETURN_TYPES = ("LATENT",)
FUNCTION = "generate"
2023-01-26 17:23:15 +00:00
CATEGORY = "latent"
2023-01-03 06:53:32 +00:00
def generate(self, width, height, batch_size=1):
latent = torch.zeros([batch_size, 4, height // 8, width // 8], device=self.device)
return ({"samples":latent}, )
2023-01-03 06:53:32 +00:00
2023-02-16 15:38:08 +00:00
class LatentFromBatch:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
"length": ("INT", {"default": 1, "min": 1, "max": 64}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "frombatch"
CATEGORY = "latent/batch"
def frombatch(self, samples, batch_index, length):
s = samples.copy()
s_in = samples["samples"]
batch_index = min(s_in.shape[0] - 1, batch_index)
length = min(s_in.shape[0] - batch_index, length)
s["samples"] = s_in[batch_index:batch_index + length].clone()
if "noise_mask" in samples:
masks = samples["noise_mask"]
if masks.shape[0] == 1:
s["noise_mask"] = masks.clone()
else:
if masks.shape[0] < s_in.shape[0]:
masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
s["noise_mask"] = masks[batch_index:batch_index + length].clone()
if "batch_index" not in s:
s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
else:
s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
return (s,)
class RepeatLatentBatch:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"amount": ("INT", {"default": 1, "min": 1, "max": 64}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "repeat"
CATEGORY = "latent/batch"
def repeat(self, samples, amount):
s = samples.copy()
s_in = samples["samples"]
s["samples"] = s_in.repeat((amount, 1,1,1))
if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
masks = samples["noise_mask"]
if masks.shape[0] < s_in.shape[0]:
masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
if "batch_index" in s:
offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
return (s,)
2023-01-03 06:53:32 +00:00
class LatentUpscale:
2023-06-17 05:54:33 +00:00
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
crop_methods = ["disabled", "center"]
2023-01-03 06:53:32 +00:00
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
2023-09-24 15:08:54 +00:00
"width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"crop": (s.crop_methods,)}}
2023-01-03 06:53:32 +00:00
RETURN_TYPES = ("LATENT",)
FUNCTION = "upscale"
CATEGORY = "latent"
def upscale(self, samples, upscale_method, width, height, crop):
2023-09-24 15:08:54 +00:00
if width == 0 and height == 0:
s = samples
else:
s = samples.copy()
if width == 0:
height = max(64, height)
width = max(64, round(samples["samples"].shape[3] * height / samples["samples"].shape[2]))
elif height == 0:
width = max(64, width)
height = max(64, round(samples["samples"].shape[2] * width / samples["samples"].shape[3]))
else:
width = max(64, width)
height = max(64, height)
s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
2023-01-03 06:53:32 +00:00
return (s,)
2023-05-23 16:53:38 +00:00
class LatentUpscaleBy:
2023-06-17 05:54:33 +00:00
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
2023-05-23 16:53:38 +00:00
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
"scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "upscale"
CATEGORY = "latent"
def upscale(self, samples, upscale_method, scale_by):
s = samples.copy()
width = round(samples["samples"].shape[3] * scale_by)
height = round(samples["samples"].shape[2] * scale_by)
s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
return (s,)
2023-01-31 07:28:07 +00:00
class LatentRotate:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "rotate"
2023-03-06 06:30:17 +00:00
CATEGORY = "latent/transform"
2023-01-31 07:28:07 +00:00
def rotate(self, samples, rotation):
s = samples.copy()
2023-01-31 07:28:07 +00:00
rotate_by = 0
if rotation.startswith("90"):
rotate_by = 1
elif rotation.startswith("180"):
rotate_by = 2
elif rotation.startswith("270"):
rotate_by = 3
s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
2023-01-31 07:28:07 +00:00
return (s,)
2023-01-31 08:28:38 +00:00
class LatentFlip:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "flip"
2023-03-06 06:30:17 +00:00
CATEGORY = "latent/transform"
2023-01-31 08:28:38 +00:00
def flip(self, samples, flip_method):
s = samples.copy()
2023-01-31 08:28:38 +00:00
if flip_method.startswith("x"):
s["samples"] = torch.flip(samples["samples"], dims=[2])
2023-01-31 08:28:38 +00:00
elif flip_method.startswith("y"):
s["samples"] = torch.flip(samples["samples"], dims=[3])
2023-01-31 08:28:38 +00:00
return (s,)
class LatentComposite:
@classmethod
def INPUT_TYPES(s):
2023-04-14 04:14:35 +00:00
return {"required": { "samples_to": ("LATENT",),
"samples_from": ("LATENT",),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "composite"
CATEGORY = "latent"
2023-04-14 04:14:35 +00:00
def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
x = x // 8
y = y // 8
feather = feather // 8
2023-04-14 04:14:35 +00:00
samples_out = samples_to.copy()
s = samples_to["samples"].clone()
samples_to = samples_to["samples"]
samples_from = samples_from["samples"]
if feather == 0:
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
else:
samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
mask = torch.ones_like(samples_from)
for t in range(feather):
if y != 0:
mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))
if y + samples_from.shape[2] < samples_to.shape[2]:
mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
if x != 0:
mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
if x + samples_from.shape[3] < samples_to.shape[3]:
mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
rev_mask = torch.ones_like(mask) - mask
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
samples_out["samples"] = s
return (samples_out,)
class LatentBlend:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"samples1": ("LATENT",),
"samples2": ("LATENT",),
"blend_factor": ("FLOAT", {
"default": 0.5,
"min": 0,
"max": 1,
"step": 0.01
}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "blend"
CATEGORY = "_for_testing"
def blend(self, samples1, samples2, blend_factor:float, blend_mode: str="normal"):
samples_out = samples1.copy()
samples1 = samples1["samples"]
samples2 = samples2["samples"]
if samples1.shape != samples2.shape:
samples2.permute(0, 3, 1, 2)
samples2 = comfy.utils.common_upscale(samples2, samples1.shape[3], samples1.shape[2], 'bicubic', crop='center')
samples2.permute(0, 2, 3, 1)
samples_blended = self.blend_mode(samples1, samples2, blend_mode)
samples_blended = samples1 * blend_factor + samples_blended * (1 - blend_factor)
samples_out["samples"] = samples_blended
return (samples_out,)
def blend_mode(self, img1, img2, mode):
if mode == "normal":
return img2
else:
raise ValueError(f"Unsupported blend mode: {mode}")
2023-02-04 20:21:46 +00:00
class LatentCrop:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
2023-05-02 18:16:27 +00:00
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
2023-02-04 20:21:46 +00:00
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "crop"
2023-03-06 06:30:17 +00:00
CATEGORY = "latent/transform"
2023-02-04 20:21:46 +00:00
def crop(self, samples, width, height, x, y):
s = samples.copy()
samples = samples['samples']
2023-02-04 20:21:46 +00:00
x = x // 8
y = y // 8
#enfonce minimum size of 64
if x > (samples.shape[3] - 8):
x = samples.shape[3] - 8
if y > (samples.shape[2] - 8):
y = samples.shape[2] - 8
new_height = height // 8
new_width = width // 8
to_x = new_width + x
to_y = new_height + y
s['samples'] = samples[:,:,y:to_y, x:to_x]
2023-02-04 20:21:46 +00:00
return (s,)
class SetLatentNoiseMask:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"mask": ("MASK",),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "set_mask"
CATEGORY = "latent/inpaint"
def set_mask(self, samples, mask):
s = samples.copy()
s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
return (s,)
2023-06-05 18:19:02 +00:00
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
latent_image = latent["samples"]
if disable_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
else:
batch_inds = latent["batch_index"] if "batch_index" in latent else None
noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
2023-04-24 10:53:10 +00:00
noise_mask = None
if "noise_mask" in latent:
2023-04-25 03:25:51 +00:00
noise_mask = latent["noise_mask"]
2023-09-27 20:45:22 +00:00
callback = latent_preview.prepare_callback(model, steps)
disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
2023-04-25 03:25:51 +00:00
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
out = latent.copy()
out["samples"] = samples
return (out, )
2023-01-03 06:53:32 +00:00
class KSampler:
@classmethod
def INPUT_TYPES(s):
return {"required":
2023-01-03 06:53:32 +00:00
{"model": ("MODEL",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
2023-01-03 06:53:32 +00:00
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"latent_image": ("LATENT", ),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
2023-06-05 18:19:02 +00:00
}
}
2023-01-03 06:53:32 +00:00
RETURN_TYPES = ("LATENT",)
FUNCTION = "sample"
2023-01-26 17:23:15 +00:00
CATEGORY = "sampling"
2023-06-05 18:19:02 +00:00
def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
2023-01-03 06:53:32 +00:00
class KSamplerAdvanced:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model": ("MODEL",),
"add_noise": (["enable", "disable"], ),
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"latent_image": ("LATENT", ),
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
"return_with_leftover_noise": (["disable", "enable"], ),
2023-06-05 18:19:02 +00:00
}
}
RETURN_TYPES = ("LATENT",)
FUNCTION = "sample"
CATEGORY = "sampling"
2023-01-03 06:53:32 +00:00
2023-06-05 18:19:02 +00:00
def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
force_full_denoise = True
if return_with_leftover_noise == "enable":
force_full_denoise = False
disable_noise = False
if add_noise == "disable":
disable_noise = True
2023-06-05 18:19:02 +00:00
return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
2023-01-03 06:53:32 +00:00
class SaveImage:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
2023-03-19 11:54:29 +00:00
self.type = "output"
self.prefix_append = ""
self.compress_level = 4
2023-01-03 06:53:32 +00:00
@classmethod
def INPUT_TYPES(s):
return {"required":
2023-01-24 07:17:18 +00:00
{"images": ("IMAGE", ),
2023-03-14 19:42:28 +00:00
"filename_prefix": ("STRING", {"default": "ComfyUI"})},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
2023-01-03 06:53:32 +00:00
}
RETURN_TYPES = ()
FUNCTION = "save_images"
OUTPUT_NODE = True
2023-01-26 17:23:15 +00:00
CATEGORY = "image"
2023-03-14 19:42:28 +00:00
def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
filename_prefix += self.prefix_append
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
2023-03-19 11:54:29 +00:00
results = list()
for (batch_number, image) in enumerate(images):
2023-01-03 06:53:32 +00:00
i = 255. * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
metadata = None
if not args.disable_metadata:
metadata = PngInfo()
if prompt is not None:
metadata.add_text("prompt", json.dumps(prompt))
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
2023-03-15 10:48:15 +00:00
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
file = f"{filename_with_batch_num}_{counter:05}_.png"
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=self.compress_level)
2023-03-19 11:54:29 +00:00
results.append({
"filename": file,
"subfolder": subfolder,
"type": self.type
2023-04-13 20:38:02 +00:00
})
2023-01-24 07:17:18 +00:00
counter += 1
2023-03-20 18:55:28 +00:00
2023-03-19 11:54:29 +00:00
return { "ui": { "images": results } }
2023-01-03 06:53:32 +00:00
2023-03-14 19:28:07 +00:00
class PreviewImage(SaveImage):
def __init__(self):
self.output_dir = folder_paths.get_temp_directory()
2023-03-19 11:54:29 +00:00
self.type = "temp"
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
self.compress_level = 1
2023-03-14 19:28:07 +00:00
@classmethod
def INPUT_TYPES(s):
return {"required":
2023-03-14 19:28:07 +00:00
{"images": ("IMAGE", ), },
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
class LoadImage:
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
return {"required":
{"image": (sorted(files), {"image_upload": True})},
}
2023-01-26 17:23:15 +00:00
CATEGORY = "image"
RETURN_TYPES = ("IMAGE", "MASK")
FUNCTION = "load_image"
def load_image(self, image):
image_path = folder_paths.get_annotated_filepath(image)
img = Image.open(image_path)
output_images = []
output_masks = []
for i in ImageSequence.Iterator(img):
i = ImageOps.exif_transpose(i)
if i.mode == 'I':
i = i.point(lambda i: i * (1 / 255))
image = i.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
if 'A' in i.getbands():
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
else:
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
output_images.append(image)
output_masks.append(mask.unsqueeze(0))
if len(output_images) > 1:
output_image = torch.cat(output_images, dim=0)
output_mask = torch.cat(output_masks, dim=0)
else:
output_image = output_images[0]
output_mask = output_masks[0]
return (output_image, output_mask)
@classmethod
def IS_CHANGED(s, image):
image_path = folder_paths.get_annotated_filepath(image)
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()
2023-03-09 18:18:08 +00:00
@classmethod
def VALIDATE_INPUTS(s, image):
if not folder_paths.exists_annotated_filepath(image):
return "Invalid image file: {}".format(image)
return True
class LoadImageMask:
_color_channels = ["alpha", "red", "green", "blue"]
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
return {"required":
{"image": (sorted(files), {"image_upload": True}),
Clipspace Menu and MaskEditor application. (#548) * Add clipspace feature. * feat: copy content to clipspace * feat: paste content from clipspace Extend validation to allow for validating annotated_path in addition to other parameters. Add support for annotated_filepath in folder_paths function. Generalize the '/upload/image' API to allow for uploading images to the 'input', 'temp', or 'output' directories. * rename contentClipboard -> clipspace * Do deep copy for imgs on copy to clipspace. * mask painting on clipspace * add original_imgs into clipspace * Preserve the original image when 'imgs' are modified * robust patch & refactoring folder_paths about annotated_filepath * wip * Only show the Paste menu if the ComfyApp.clipspace is not empty * clipspace feature added maskeditor feature added * instant refresh on paste force triggering 'changed' on paste action * enhance mask painting smooth drawing add brush_size +/- button * robust patch use mouseup event * robust patch again... * subfolder fix on paste logic attach subfolder if subfolder isn't empty * event listener patch add ], [ key event for brush size remove listener on close * Fix button positioning issue related to window height. Change brush size from button to slider. * clean commit * clean code * various bug fixes * paste action - prevent opening upload popup - ensure rendering after widget_value update * view api update - support annotated_filepath * maskeditor layout - prevent covering button by hidden div * remove dbg message * Add cursor functionality to display brush size * refactor: Replace brush preview feature with missionfloyd implementation * missionfloyd implementation * hiding brush preview off the canvas * change brush size on wheel event * keyup -> keydown event * Update web/extensions/core/maskeditor.js Co-authored-by: missionfloyd <missionfloyd@users.noreply.github.com> * Add support for channel-specific image data retrieval in /view API to fix alpha mask loading issue When loading an image with an alpha mask in JavaScript canvas, there is an issue where the alpha and RGB channels are premultiplied. To avoid reliance on JavaScript canvas, I added support for channel-specific image data retrieval in the "/view" API. This allows us to retrieve data for each channel separately and fix the alpha mask loading issue. The changes have been committed to the repository. * Enable brush preview for key and slider events * optimize * preview fix * robust patch * fix copy (clipspace) action imgs[0] copy -> whole imgs copy * support batch images on clipspace, maskeditor * copy/paste bug fixes for batch images enhance selector preview on clipspace menu add img_paste_mode option into clipspace menu * crash fix * print message if clipspace content cannot editable * Update web/extensions/core/maskeditor.js Co-authored-by: missionfloyd <missionfloyd@users.noreply.github.com> * make default img_paste_mode to 'selected' refactor space -> tab * save clipspace files to input/clipspace instead of temp * show "clipspace/filename.png" instead of 'filename.png [clipspace]' in LoadImage/LoadImageMask * refresh fix related to FILE_COMBO * Update web/extensions/core/maskeditor.js Co-authored-by: missionfloyd <missionfloyd@users.noreply.github.com> * Update web/extensions/core/maskeditor.js Co-authored-by: missionfloyd <missionfloyd@users.noreply.github.com> * adjust margin based on missionfloyd impelements * mouse event -> pointer event * pen, touch, mouse drawing patched and tested * Update web/extensions/core/maskeditor.js Co-authored-by: missionfloyd <missionfloyd@users.noreply.github.com> * add comment about touch event. --------- Co-authored-by: Lt.Dr.Data <lt.dr.data@gmail.com> Co-authored-by: missionfloyd <missionfloyd@users.noreply.github.com>
2023-05-08 18:37:36 +00:00
"channel": (s._color_channels, ), }
}
CATEGORY = "mask"
RETURN_TYPES = ("MASK",)
FUNCTION = "load_image"
def load_image(self, image, channel):
image_path = folder_paths.get_annotated_filepath(image)
i = Image.open(image_path)
2023-05-22 04:22:24 +00:00
i = ImageOps.exif_transpose(i)
if i.getbands() != ("R", "G", "B", "A"):
if i.mode == 'I':
i = i.point(lambda i: i * (1 / 255))
i = i.convert("RGBA")
mask = None
c = channel[0].upper()
if c in i.getbands():
mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
mask = torch.from_numpy(mask)
if c == 'A':
mask = 1. - mask
else:
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
return (mask.unsqueeze(0),)
@classmethod
def IS_CHANGED(s, image, channel):
image_path = folder_paths.get_annotated_filepath(image)
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()
2023-03-09 18:18:08 +00:00
@classmethod
def VALIDATE_INPUTS(s, image):
if not folder_paths.exists_annotated_filepath(image):
return "Invalid image file: {}".format(image)
return True
class ImageScale:
2023-09-19 08:40:38 +00:00
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
crop_methods = ["disabled", "center"]
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
2023-09-24 15:08:54 +00:00
"width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"crop": (s.crop_methods,)}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "upscale"
CATEGORY = "image/upscaling"
def upscale(self, image, upscale_method, width, height, crop):
2023-09-24 15:08:54 +00:00
if width == 0 and height == 0:
s = image
else:
samples = image.movedim(-1,1)
if width == 0:
width = max(1, round(samples.shape[3] * height / samples.shape[2]))
elif height == 0:
height = max(1, round(samples.shape[2] * width / samples.shape[3]))
s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
s = s.movedim(1,-1)
return (s,)
2023-01-03 06:53:32 +00:00
2023-06-12 05:14:04 +00:00
class ImageScaleBy:
2023-09-19 08:40:38 +00:00
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
2023-06-12 05:14:04 +00:00
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
"scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "upscale"
CATEGORY = "image/upscaling"
def upscale(self, image, upscale_method, scale_by):
samples = image.movedim(-1,1)
width = round(samples.shape[3] * scale_by)
height = round(samples.shape[2] * scale_by)
s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
s = s.movedim(1,-1)
return (s,)
class ImageInvert:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",)}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "invert"
CATEGORY = "image"
def invert(self, image):
s = 1.0 - image
return (s,)
2023-08-15 00:23:38 +00:00
class ImageBatch:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image1": ("IMAGE",), "image2": ("IMAGE",)}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "batch"
CATEGORY = "image"
def batch(self, image1, image2):
if image1.shape[1:] != image2.shape[1:]:
image2 = comfy.utils.common_upscale(image2.movedim(-1,1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1,-1)
s = torch.cat((image1, image2), dim=0)
return (s,)
class EmptyImage:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required": { "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
2023-09-25 05:46:44 +00:00
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
"color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "generate"
CATEGORY = "image"
def generate(self, width, height, batch_size=1, color=0):
r = torch.full([batch_size, height, width, 1], ((color >> 16) & 0xFF) / 0xFF)
g = torch.full([batch_size, height, width, 1], ((color >> 8) & 0xFF) / 0xFF)
b = torch.full([batch_size, height, width, 1], ((color) & 0xFF) / 0xFF)
return (torch.cat((r, g, b), dim=-1), )
2023-03-23 15:33:35 +00:00
class ImagePadForOutpaint:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
2023-05-02 18:16:27 +00:00
"left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
2023-03-25 08:49:58 +00:00
"feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
2023-03-23 15:33:35 +00:00
}
}
RETURN_TYPES = ("IMAGE", "MASK")
FUNCTION = "expand_image"
CATEGORY = "image"
def expand_image(self, image, left, top, right, bottom, feathering):
2023-03-23 15:33:35 +00:00
d1, d2, d3, d4 = image.size()
new_image = torch.ones(
2023-03-23 15:33:35 +00:00
(d1, d2 + top + bottom, d3 + left + right, d4),
dtype=torch.float32,
) * 0.5
2023-03-23 15:33:35 +00:00
new_image[:, top:top + d2, left:left + d3, :] = image
mask = torch.ones(
(d2 + top + bottom, d3 + left + right),
dtype=torch.float32,
)
t = torch.zeros(
(d2, d3),
dtype=torch.float32
)
if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
for i in range(d2):
for j in range(d3):
dt = i if top != 0 else d2
db = d2 - i if bottom != 0 else d2
dl = j if left != 0 else d3
dr = d3 - j if right != 0 else d3
d = min(dt, db, dl, dr)
if d >= feathering:
continue
v = (feathering - d) / feathering
t[i, j] = v * v
mask[top:top + d2, left:left + d3] = t
2023-03-23 15:33:35 +00:00
return (new_image, mask)
2023-01-03 06:53:32 +00:00
NODE_CLASS_MAPPINGS = {
"KSampler": KSampler,
"CheckpointLoaderSimple": CheckpointLoaderSimple,
2023-01-03 06:53:32 +00:00
"CLIPTextEncode": CLIPTextEncode,
"CLIPSetLastLayer": CLIPSetLastLayer,
2023-01-03 06:53:32 +00:00
"VAEDecode": VAEDecode,
"VAEEncode": VAEEncode,
"VAEEncodeForInpaint": VAEEncodeForInpaint,
2023-01-03 06:53:32 +00:00
"VAELoader": VAELoader,
"EmptyLatentImage": EmptyLatentImage,
"LatentUpscale": LatentUpscale,
2023-05-23 16:53:38 +00:00
"LatentUpscaleBy": LatentUpscaleBy,
"LatentFromBatch": LatentFromBatch,
"RepeatLatentBatch": RepeatLatentBatch,
2023-01-03 06:53:32 +00:00
"SaveImage": SaveImage,
2023-03-14 19:28:07 +00:00
"PreviewImage": PreviewImage,
"LoadImage": LoadImage,
"LoadImageMask": LoadImageMask,
"ImageScale": ImageScale,
2023-06-12 05:14:04 +00:00
"ImageScaleBy": ImageScaleBy,
"ImageInvert": ImageInvert,
2023-08-15 00:23:38 +00:00
"ImageBatch": ImageBatch,
2023-03-23 15:33:35 +00:00
"ImagePadForOutpaint": ImagePadForOutpaint,
"EmptyImage": EmptyImage,
2023-09-24 17:27:57 +00:00
"ConditioningAverage": ConditioningAverage ,
"ConditioningCombine": ConditioningCombine,
"ConditioningConcat": ConditioningConcat,
"ConditioningSetArea": ConditioningSetArea,
"ConditioningSetAreaPercentage": ConditioningSetAreaPercentage,
"ConditioningSetAreaStrength": ConditioningSetAreaStrength,
"ConditioningSetMask": ConditioningSetMask,
"KSamplerAdvanced": KSamplerAdvanced,
"SetLatentNoiseMask": SetLatentNoiseMask,
"LatentComposite": LatentComposite,
"LatentBlend": LatentBlend,
2023-01-31 07:28:07 +00:00
"LatentRotate": LatentRotate,
2023-01-31 08:28:38 +00:00
"LatentFlip": LatentFlip,
2023-02-04 20:21:46 +00:00
"LatentCrop": LatentCrop,
"LoraLoader": LoraLoader,
"CLIPLoader": CLIPLoader,
"UNETLoader": UNETLoader,
"DualCLIPLoader": DualCLIPLoader,
"CLIPVisionEncode": CLIPVisionEncode,
"StyleModelApply": StyleModelApply,
"unCLIPConditioning": unCLIPConditioning,
2023-02-16 15:38:08 +00:00
"ControlNetApply": ControlNetApply,
"ControlNetApplyAdvanced": ControlNetApplyAdvanced,
2023-02-16 15:38:08 +00:00
"ControlNetLoader": ControlNetLoader,
2023-02-23 04:22:03 +00:00
"DiffControlNetLoader": DiffControlNetLoader,
2023-03-06 06:30:17 +00:00
"StyleModelLoader": StyleModelLoader,
"CLIPVisionLoader": CLIPVisionLoader,
"VAEDecodeTiled": VAEDecodeTiled,
2023-03-11 20:28:15 +00:00
"VAEEncodeTiled": VAEEncodeTiled,
"unCLIPCheckpointLoader": unCLIPCheckpointLoader,
2023-04-19 13:36:19 +00:00
"GLIGENLoader": GLIGENLoader,
"GLIGENTextBoxApply": GLIGENTextBoxApply,
"InpaintModelConditioning": InpaintModelConditioning,
2023-04-19 13:36:19 +00:00
2023-04-05 02:48:11 +00:00
"CheckpointLoader": CheckpointLoader,
2023-04-06 06:57:31 +00:00
"DiffusersLoader": DiffusersLoader,
"LoadLatent": LoadLatent,
"SaveLatent": SaveLatent,
"ConditioningZeroOut": ConditioningZeroOut,
"ConditioningSetTimestepRange": ConditioningSetTimestepRange,
"LoraLoaderModelOnly": LoraLoaderModelOnly,
2023-01-03 06:53:32 +00:00
}
2023-03-30 21:13:58 +00:00
NODE_DISPLAY_NAME_MAPPINGS = {
# Sampling
"KSampler": "KSampler",
"KSamplerAdvanced": "KSampler (Advanced)",
# Loaders
"CheckpointLoader": "Load Checkpoint With Config (DEPRECATED)",
2023-04-08 19:53:01 +00:00
"CheckpointLoaderSimple": "Load Checkpoint",
2023-03-30 21:13:58 +00:00
"VAELoader": "Load VAE",
"LoraLoader": "Load LoRA",
"CLIPLoader": "Load CLIP",
"ControlNetLoader": "Load ControlNet Model",
"DiffControlNetLoader": "Load ControlNet Model (diff)",
"StyleModelLoader": "Load Style Model",
"CLIPVisionLoader": "Load CLIP Vision",
"UpscaleModelLoader": "Load Upscale Model",
# Conditioning
"CLIPVisionEncode": "CLIP Vision Encode",
"StyleModelApply": "Apply Style Model",
"CLIPTextEncode": "CLIP Text Encode (Prompt)",
"CLIPSetLastLayer": "CLIP Set Last Layer",
"ConditioningCombine": "Conditioning (Combine)",
"ConditioningAverage ": "Conditioning (Average)",
"ConditioningConcat": "Conditioning (Concat)",
2023-03-30 21:13:58 +00:00
"ConditioningSetArea": "Conditioning (Set Area)",
"ConditioningSetAreaPercentage": "Conditioning (Set Area with Percentage)",
"ConditioningSetMask": "Conditioning (Set Mask)",
2023-03-30 21:13:58 +00:00
"ControlNetApply": "Apply ControlNet",
"ControlNetApplyAdvanced": "Apply ControlNet (Advanced)",
2023-03-30 21:13:58 +00:00
# Latent
"VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
"SetLatentNoiseMask": "Set Latent Noise Mask",
"VAEDecode": "VAE Decode",
"VAEEncode": "VAE Encode",
"LatentRotate": "Rotate Latent",
"LatentFlip": "Flip Latent",
"LatentCrop": "Crop Latent",
"EmptyLatentImage": "Empty Latent Image",
"LatentUpscale": "Upscale Latent",
2023-05-23 16:53:38 +00:00
"LatentUpscaleBy": "Upscale Latent By",
2023-03-30 21:13:58 +00:00
"LatentComposite": "Latent Composite",
"LatentBlend": "Latent Blend",
"LatentFromBatch" : "Latent From Batch",
"RepeatLatentBatch": "Repeat Latent Batch",
2023-03-30 21:13:58 +00:00
# Image
"SaveImage": "Save Image",
"PreviewImage": "Preview Image",
"LoadImage": "Load Image",
"LoadImageMask": "Load Image (as Mask)",
"ImageScale": "Upscale Image",
2023-06-12 05:14:04 +00:00
"ImageScaleBy": "Upscale Image By",
2023-03-30 21:13:58 +00:00
"ImageUpscaleWithModel": "Upscale Image (using Model)",
"ImageInvert": "Invert Image",
"ImagePadForOutpaint": "Pad Image for Outpainting",
2023-08-15 00:23:38 +00:00
"ImageBatch": "Batch Images",
2023-03-30 21:13:58 +00:00
# _for_testing
"VAEDecodeTiled": "VAE Decode (Tiled)",
"VAEEncodeTiled": "VAE Encode (Tiled)",
}
EXTENSION_WEB_DIRS = {}
def load_custom_node(module_path, ignore=set()):
module_name = os.path.basename(module_path)
if os.path.isfile(module_path):
sp = os.path.splitext(module_path)
module_name = sp[0]
try:
if os.path.isfile(module_path):
module_spec = importlib.util.spec_from_file_location(module_name, module_path)
module_dir = os.path.split(module_path)[0]
else:
module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
module_dir = module_path
module = importlib.util.module_from_spec(module_spec)
sys.modules[module_name] = module
module_spec.loader.exec_module(module)
if hasattr(module, "WEB_DIRECTORY") and getattr(module, "WEB_DIRECTORY") is not None:
web_dir = os.path.abspath(os.path.join(module_dir, getattr(module, "WEB_DIRECTORY")))
if os.path.isdir(web_dir):
EXTENSION_WEB_DIRS[module_name] = web_dir
if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
for name in module.NODE_CLASS_MAPPINGS:
if name not in ignore:
NODE_CLASS_MAPPINGS[name] = module.NODE_CLASS_MAPPINGS[name]
if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
return True
else:
print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
return False
except Exception as e:
print(traceback.format_exc())
print(f"Cannot import {module_path} module for custom nodes:", e)
return False
2023-02-13 11:17:40 +00:00
def load_custom_nodes():
base_node_names = set(NODE_CLASS_MAPPINGS.keys())
node_paths = folder_paths.get_folder_paths("custom_nodes")
node_import_times = []
for custom_node_path in node_paths:
2023-11-23 21:24:58 +00:00
possible_modules = os.listdir(os.path.realpath(custom_node_path))
if "__pycache__" in possible_modules:
possible_modules.remove("__pycache__")
for possible_module in possible_modules:
module_path = os.path.join(custom_node_path, possible_module)
if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
if module_path.endswith(".disabled"): continue
time_before = time.perf_counter()
success = load_custom_node(module_path, base_node_names)
node_import_times.append((time.perf_counter() - time_before, module_path, success))
2023-05-13 17:15:31 +00:00
if len(node_import_times) > 0:
2023-05-13 17:05:52 +00:00
print("\nImport times for custom nodes:")
2023-05-13 17:15:31 +00:00
for n in sorted(node_import_times):
if n[2]:
import_message = ""
else:
import_message = " (IMPORT FAILED)"
print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
print()
def init_custom_nodes():
extras_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras")
extras_files = [
"nodes_latent.py",
"nodes_hypernetwork.py",
"nodes_upscale_model.py",
"nodes_post_processing.py",
"nodes_mask.py",
"nodes_compositing.py",
"nodes_rebatch.py",
"nodes_model_merging.py",
"nodes_tomesd.py",
"nodes_clip_sdxl.py",
"nodes_canny.py",
"nodes_freelunch.py",
"nodes_custom_sampler.py",
"nodes_hypertile.py",
"nodes_model_advanced.py",
"nodes_model_downscale.py",
2023-11-18 09:44:17 +00:00
"nodes_images.py",
"nodes_video_model.py",
"nodes_sag.py",
2023-12-15 18:58:16 +00:00
"nodes_perpneg.py",
"nodes_stable3d.py",
"nodes_sdupscale.py",
"nodes_photomaker.py",
"nodes_cond.py",
2024-02-16 17:56:11 +00:00
"nodes_stable_cascade.py",
]
for node_file in extras_files:
load_custom_node(os.path.join(extras_dir, node_file))
load_custom_nodes()