ComfyUI/comfy/samplers.py

679 lines
29 KiB
Python
Raw Normal View History

2023-02-08 21:51:19 +00:00
from .k_diffusion import sampling as k_diffusion_sampling
from .k_diffusion import external as k_diffusion_external
2023-02-11 08:18:27 +00:00
from .extra_samplers import uni_pc
2023-01-03 06:53:32 +00:00
import torch
import contextlib
from comfy import model_management
2023-02-23 02:06:43 +00:00
from .ldm.models.diffusion.ddim import DDIMSampler
from .ldm.modules.diffusionmodules.util import make_ddim_timesteps
import math
def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
return abs(a*b) // math.gcd(a, b)
2023-01-03 06:53:32 +00:00
2023-02-16 15:38:08 +00:00
#The main sampling function shared by all the samplers
#Returns predicted noise
def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={}, seed=None):
2023-02-16 15:38:08 +00:00
def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in):
area = (x_in.shape[2], x_in.shape[3], 0, 0)
strength = 1.0
if 'area' in cond[1]:
area = cond[1]['area']
if 'strength' in cond[1]:
strength = cond[1]['strength']
2023-02-11 08:18:27 +00:00
adm_cond = None
if 'adm_encoded' in cond[1]:
adm_cond = cond[1]['adm_encoded']
input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
if 'mask' in cond[1]:
# Scale the mask to the size of the input
# The mask should have been resized as we began the sampling process
mask_strength = 1.0
if "mask_strength" in cond[1]:
mask_strength = cond[1]["mask_strength"]
mask = cond[1]['mask']
assert(mask.shape[1] == x_in.shape[2])
assert(mask.shape[2] == x_in.shape[3])
mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
else:
mask = torch.ones_like(input_x)
mult = mask * strength
if 'mask' not in cond[1]:
rr = 8
if area[2] != 0:
for t in range(rr):
mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
if (area[0] + area[2]) < x_in.shape[2]:
for t in range(rr):
mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
if area[3] != 0:
for t in range(rr):
mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
if (area[1] + area[3]) < x_in.shape[3]:
for t in range(rr):
mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))
2023-02-15 21:38:20 +00:00
conditionning = {}
conditionning['c_crossattn'] = cond[0]
if cond_concat_in is not None and len(cond_concat_in) > 0:
cropped = []
for x in cond_concat_in:
cr = x[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
cropped.append(cr)
conditionning['c_concat'] = torch.cat(cropped, dim=1)
2023-02-16 15:38:08 +00:00
if adm_cond is not None:
conditionning['c_adm'] = adm_cond
2023-02-16 15:38:08 +00:00
control = None
if 'control' in cond[1]:
control = cond[1]['control']
2023-04-19 13:36:19 +00:00
patches = None
if 'gligen' in cond[1]:
gligen = cond[1]['gligen']
patches = {}
gligen_type = gligen[0]
gligen_model = gligen[1]
if gligen_type == "position":
gligen_patch = gligen_model.set_position(input_x.shape, gligen[2], input_x.device)
else:
gligen_patch = gligen_model.set_empty(input_x.shape, input_x.device)
patches['middle_patch'] = [gligen_patch]
return (input_x, mult, conditionning, area, control, patches)
2023-02-15 21:38:20 +00:00
def cond_equal_size(c1, c2):
2023-02-16 15:38:08 +00:00
if c1 is c2:
return True
2023-02-15 21:38:20 +00:00
if c1.keys() != c2.keys():
return False
if 'c_crossattn' in c1:
s1 = c1['c_crossattn'].shape
s2 = c2['c_crossattn'].shape
if s1 != s2:
if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
return False
mult_min = lcm(s1[1], s2[1])
diff = mult_min // min(s1[1], s2[1])
if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
return False
2023-02-15 21:38:20 +00:00
if 'c_concat' in c1:
if c1['c_concat'].shape != c2['c_concat'].shape:
return False
if 'c_adm' in c1:
if c1['c_adm'].shape != c2['c_adm'].shape:
return False
2023-02-15 21:38:20 +00:00
return True
2023-02-16 15:38:08 +00:00
def can_concat_cond(c1, c2):
if c1[0].shape != c2[0].shape:
return False
2023-04-19 13:36:19 +00:00
#control
2023-02-16 15:38:08 +00:00
if (c1[4] is None) != (c2[4] is None):
return False
if c1[4] is not None:
if c1[4] is not c2[4]:
return False
2023-04-19 13:36:19 +00:00
#patches
if (c1[5] is None) != (c2[5] is None):
return False
if (c1[5] is not None):
if c1[5] is not c2[5]:
return False
2023-02-16 15:38:08 +00:00
return cond_equal_size(c1[2], c2[2])
2023-02-15 21:38:20 +00:00
def cond_cat(c_list):
c_crossattn = []
c_concat = []
c_adm = []
crossattn_max_len = 0
2023-02-15 21:38:20 +00:00
for x in c_list:
if 'c_crossattn' in x:
c = x['c_crossattn']
if crossattn_max_len == 0:
crossattn_max_len = c.shape[1]
else:
crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
c_crossattn.append(c)
2023-02-15 21:38:20 +00:00
if 'c_concat' in x:
c_concat.append(x['c_concat'])
if 'c_adm' in x:
c_adm.append(x['c_adm'])
2023-02-15 21:38:20 +00:00
out = {}
c_crossattn_out = []
for c in c_crossattn:
if c.shape[1] < crossattn_max_len:
c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
c_crossattn_out.append(c)
if len(c_crossattn_out) > 0:
out['c_crossattn'] = [torch.cat(c_crossattn_out)]
2023-02-15 21:38:20 +00:00
if len(c_concat) > 0:
out['c_concat'] = [torch.cat(c_concat)]
if len(c_adm) > 0:
out['c_adm'] = torch.cat(c_adm)
2023-02-15 21:38:20 +00:00
return out
def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in, model_options):
out_cond = torch.zeros_like(x_in)
out_count = torch.ones_like(x_in)/100000.0
out_uncond = torch.zeros_like(x_in)
out_uncond_count = torch.ones_like(x_in)/100000.0
COND = 0
UNCOND = 1
to_run = []
for x in cond:
2023-02-16 15:38:08 +00:00
p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
if p is None:
continue
to_run += [(p, COND)]
for x in uncond:
2023-02-16 15:38:08 +00:00
p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
if p is None:
continue
to_run += [(p, UNCOND)]
while len(to_run) > 0:
first = to_run[0]
first_shape = first[0][0].shape
to_batch_temp = []
for x in range(len(to_run)):
2023-02-16 15:38:08 +00:00
if can_concat_cond(to_run[x][0], first[0]):
to_batch_temp += [x]
to_batch_temp.reverse()
to_batch = to_batch_temp[:1]
for i in range(1, len(to_batch_temp) + 1):
batch_amount = to_batch_temp[:len(to_batch_temp)//i]
if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area):
to_batch = batch_amount
break
input_x = []
mult = []
c = []
cond_or_uncond = []
area = []
2023-02-16 15:38:08 +00:00
control = None
2023-04-19 13:36:19 +00:00
patches = None
for x in to_batch:
o = to_run.pop(x)
p = o[0]
input_x += [p[0]]
mult += [p[1]]
c += [p[2]]
area += [p[3]]
cond_or_uncond += [o[1]]
2023-02-16 15:38:08 +00:00
control = p[4]
2023-04-19 13:36:19 +00:00
patches = p[5]
batch_chunks = len(cond_or_uncond)
input_x = torch.cat(input_x)
2023-02-15 21:38:20 +00:00
c = cond_cat(c)
2023-02-16 15:38:08 +00:00
timestep_ = torch.cat([timestep] * batch_chunks)
2023-02-16 15:38:08 +00:00
if control is not None:
c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))
2023-02-16 15:38:08 +00:00
2023-04-19 13:36:19 +00:00
transformer_options = {}
if 'transformer_options' in model_options:
2023-04-19 13:36:19 +00:00
transformer_options = model_options['transformer_options'].copy()
if patches is not None:
if "patches" in transformer_options:
cur_patches = transformer_options["patches"].copy()
for p in patches:
if p in cur_patches:
cur_patches[p] = cur_patches[p] + patches[p]
else:
cur_patches[p] = patches[p]
else:
transformer_options["patches"] = patches
2023-04-19 13:36:19 +00:00
c['transformer_options'] = transformer_options
2023-06-09 16:24:24 +00:00
output = model_function(input_x, timestep_, **c).chunk(batch_chunks)
del input_x
model_management.throw_exception_if_processing_interrupted()
for o in range(batch_chunks):
if cond_or_uncond[o] == COND:
out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
else:
out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
del mult
out_cond /= out_count
del out_count
out_uncond /= out_uncond_count
del out_uncond_count
return out_cond, out_uncond
max_total_area = model_management.maximum_batch_area()
cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat, model_options)
if "sampler_cfg_function" in model_options:
args = {"cond": cond, "uncond": uncond, "cond_scale": cond_scale, "timestep": timestep}
return model_options["sampler_cfg_function"](args)
else:
return uncond + (cond - uncond) * cond_scale
2023-01-03 06:53:32 +00:00
2023-02-16 15:38:08 +00:00
class CompVisVDenoiser(k_diffusion_external.DiscreteVDDPMDenoiser):
def __init__(self, model, quantize=False, device='cpu'):
super().__init__(model, model.alphas_cumprod, quantize=quantize)
def get_v(self, x, t, cond, **kwargs):
return self.inner_model.apply_model(x, t, cond, **kwargs)
class CFGNoisePredictor(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
self.alphas_cumprod = model.alphas_cumprod
def apply_model(self, x, timestep, cond, uncond, cond_scale, cond_concat=None, model_options={}, seed=None):
out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, cond_concat, model_options=model_options, seed=seed)
2023-02-16 15:38:08 +00:00
return out
class KSamplerX0Inpaint(torch.nn.Module):
2023-02-11 08:18:27 +00:00
def __init__(self, model):
super().__init__()
self.inner_model = model
def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, cond_concat=None, model_options={}, seed=None):
if denoise_mask is not None:
latent_mask = 1. - denoise_mask
x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask
out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, cond_concat=cond_concat, model_options=model_options, seed=seed)
if denoise_mask is not None:
out *= denoise_mask
if denoise_mask is not None:
out += self.latent_image * latent_mask
return out
2023-02-11 08:18:27 +00:00
2023-01-03 06:53:32 +00:00
def simple_scheduler(model, steps):
sigs = []
ss = len(model.sigmas) / steps
for x in range(steps):
sigs += [float(model.sigmas[-(1 + int(x * ss))])]
sigs += [0.0]
return torch.FloatTensor(sigs)
2023-02-23 02:06:43 +00:00
def ddim_scheduler(model, steps):
sigs = []
ddim_timesteps = make_ddim_timesteps(ddim_discr_method="uniform", num_ddim_timesteps=steps, num_ddpm_timesteps=model.inner_model.inner_model.num_timesteps, verbose=False)
for x in range(len(ddim_timesteps) - 1, -1, -1):
ts = ddim_timesteps[x]
if ts > 999:
ts = 999
sigs.append(model.t_to_sigma(torch.tensor(ts)))
2023-02-23 02:06:43 +00:00
sigs += [0.0]
return torch.FloatTensor(sigs)
2023-02-15 21:38:20 +00:00
def blank_inpaint_image_like(latent_image):
blank_image = torch.ones_like(latent_image)
# these are the values for "zero" in pixel space translated to latent space
blank_image[:,0] *= 0.8223
blank_image[:,1] *= -0.6876
blank_image[:,2] *= 0.6364
blank_image[:,3] *= 0.1380
return blank_image
def get_mask_aabb(masks):
if masks.numel() == 0:
return torch.zeros((0, 4), device=masks.device, dtype=torch.int)
b = masks.shape[0]
bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
for i in range(b):
mask = masks[i]
if mask.numel() == 0:
continue
if torch.max(mask != 0) == False:
is_empty[i] = True
continue
y, x = torch.where(mask)
bounding_boxes[i, 0] = torch.min(x)
bounding_boxes[i, 1] = torch.min(y)
bounding_boxes[i, 2] = torch.max(x)
bounding_boxes[i, 3] = torch.max(y)
return bounding_boxes, is_empty
def resolve_cond_masks(conditions, h, w, device):
# We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
# While we're doing this, we can also resolve the mask device and scaling for performance reasons
for i in range(len(conditions)):
c = conditions[i]
if 'mask' in c[1]:
mask = c[1]['mask']
mask = mask.to(device=device)
modified = c[1].copy()
if len(mask.shape) == 2:
mask = mask.unsqueeze(0)
if mask.shape[2] != h or mask.shape[3] != w:
mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1)
if modified.get("set_area_to_bounds", False):
bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
boxes, is_empty = get_mask_aabb(bounds)
if is_empty[0]:
# Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
modified['area'] = (8, 8, 0, 0)
else:
box = boxes[0]
H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
H = max(8, H)
W = max(8, W)
area = (int(H), int(W), int(Y), int(X))
modified['area'] = area
modified['mask'] = mask
conditions[i] = [c[0], modified]
def create_cond_with_same_area_if_none(conds, c):
if 'area' not in c[1]:
return
c_area = c[1]['area']
smallest = None
for x in conds:
if 'area' in x[1]:
a = x[1]['area']
if c_area[2] >= a[2] and c_area[3] >= a[3]:
if a[0] + a[2] >= c_area[0] + c_area[2]:
if a[1] + a[3] >= c_area[1] + c_area[3]:
if smallest is None:
smallest = x
elif 'area' not in smallest[1]:
smallest = x
else:
if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]:
smallest = x
else:
if smallest is None:
smallest = x
if smallest is None:
return
if 'area' in smallest[1]:
if smallest[1]['area'] == c_area:
return
n = c[1].copy()
conds += [[smallest[0], n]]
2023-01-03 06:53:32 +00:00
2023-04-19 13:36:19 +00:00
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
2023-02-16 15:38:08 +00:00
cond_cnets = []
cond_other = []
uncond_cnets = []
uncond_other = []
for t in range(len(conds)):
x = conds[t]
if 'area' not in x[1]:
2023-04-19 13:36:19 +00:00
if name in x[1] and x[1][name] is not None:
cond_cnets.append(x[1][name])
2023-02-16 15:38:08 +00:00
else:
cond_other.append((x, t))
for t in range(len(uncond)):
x = uncond[t]
if 'area' not in x[1]:
2023-04-19 13:36:19 +00:00
if name in x[1] and x[1][name] is not None:
uncond_cnets.append(x[1][name])
2023-02-16 15:38:08 +00:00
else:
uncond_other.append((x, t))
if len(uncond_cnets) > 0:
return
for x in range(len(cond_cnets)):
temp = uncond_other[x % len(uncond_other)]
o = temp[0]
2023-04-19 13:36:19 +00:00
if name in o[1] and o[1][name] is not None:
2023-02-16 15:38:08 +00:00
n = o[1].copy()
2023-04-19 13:36:19 +00:00
n[name] = uncond_fill_func(cond_cnets, x)
2023-02-16 15:38:08 +00:00
uncond += [[o[0], n]]
else:
n = o[1].copy()
2023-04-19 13:36:19 +00:00
n[name] = uncond_fill_func(cond_cnets, x)
2023-02-16 15:38:08 +00:00
uncond[temp[1]] = [o[0], n]
def encode_adm(model, conds, batch_size, width, height, device, prompt_type):
for t in range(len(conds)):
x = conds[t]
2023-06-09 16:24:24 +00:00
adm_out = None
if 'adm' in x[1]:
adm_out = x[1]["adm"]
else:
params = x[1].copy()
params["width"] = params.get("width", width * 8)
params["height"] = params.get("height", height * 8)
params["prompt_type"] = params.get("prompt_type", prompt_type)
adm_out = model.encode_adm(device=device, **params)
2023-06-09 16:24:24 +00:00
if adm_out is not None:
x[1] = x[1].copy()
x[1]["adm_encoded"] = torch.cat([adm_out] * batch_size).to(device)
return conds
2023-04-19 13:36:19 +00:00
2023-01-03 06:53:32 +00:00
class KSampler:
SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"]
SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde",
"dpmpp_2m", "dpmpp_2m_sde", "ddim", "uni_pc", "uni_pc_bh2"]
2023-01-03 06:53:32 +00:00
def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
2023-01-03 06:53:32 +00:00
self.model = model
2023-02-16 15:38:08 +00:00
self.model_denoise = CFGNoisePredictor(self.model)
2023-01-03 06:53:32 +00:00
if self.model.parameterization == "v":
2023-02-16 15:38:08 +00:00
self.model_wrap = CompVisVDenoiser(self.model_denoise, quantize=True)
2023-01-03 06:53:32 +00:00
else:
2023-02-16 15:38:08 +00:00
self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model_denoise, quantize=True)
self.model_wrap.parameterization = self.model.parameterization
self.model_k = KSamplerX0Inpaint(self.model_wrap)
2023-01-03 06:53:32 +00:00
self.device = device
if scheduler not in self.SCHEDULERS:
scheduler = self.SCHEDULERS[0]
if sampler not in self.SAMPLERS:
sampler = self.SAMPLERS[0]
self.scheduler = scheduler
self.sampler = sampler
self.sigma_min=float(self.model_wrap.sigma_min)
self.sigma_max=float(self.model_wrap.sigma_max)
2023-01-03 06:53:32 +00:00
self.set_steps(steps, denoise)
self.denoise = denoise
self.model_options = model_options
2023-01-03 06:53:32 +00:00
2023-04-25 02:45:35 +00:00
def calculate_sigmas(self, steps):
sigmas = None
discard_penultimate_sigma = False
if self.sampler in ['dpm_2', 'dpm_2_ancestral']:
steps += 1
discard_penultimate_sigma = True
if self.scheduler == "karras":
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
elif self.scheduler == "exponential":
sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
2023-04-25 02:45:35 +00:00
elif self.scheduler == "normal":
sigmas = self.model_wrap.get_sigmas(steps)
elif self.scheduler == "simple":
sigmas = simple_scheduler(self.model_wrap, steps)
elif self.scheduler == "ddim_uniform":
sigmas = ddim_scheduler(self.model_wrap, steps)
else:
print("error invalid scheduler", self.scheduler)
if discard_penultimate_sigma:
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
return sigmas
2023-01-03 06:53:32 +00:00
def set_steps(self, steps, denoise=None):
self.steps = steps
if denoise is None or denoise > 0.9999:
2023-04-25 02:45:35 +00:00
self.sigmas = self.calculate_sigmas(steps).to(self.device)
2023-01-03 06:53:32 +00:00
else:
new_steps = int(steps/denoise)
2023-04-25 02:45:35 +00:00
sigmas = self.calculate_sigmas(new_steps).to(self.device)
2023-01-03 06:53:32 +00:00
self.sigmas = sigmas[-(steps + 1):]
def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
if sigmas is None:
sigmas = self.sigmas
2023-01-03 06:53:32 +00:00
sigma_min = self.sigma_min
if last_step is not None and last_step < (len(sigmas) - 1):
2023-01-03 06:53:32 +00:00
sigma_min = sigmas[last_step]
sigmas = sigmas[:last_step + 1]
if force_full_denoise:
sigmas[-1] = 0
2023-01-03 06:53:32 +00:00
if start_step is not None:
if start_step < (len(sigmas) - 1):
sigmas = sigmas[start_step:]
else:
if latent_image is not None:
return latent_image
else:
return torch.zeros_like(noise)
2023-01-03 06:53:32 +00:00
positive = positive[:]
negative = negative[:]
resolve_cond_masks(positive, noise.shape[2], noise.shape[3], self.device)
resolve_cond_masks(negative, noise.shape[2], noise.shape[3], self.device)
#make sure each cond area has an opposite one with the same area
for c in positive:
create_cond_with_same_area_if_none(negative, c)
for c in negative:
create_cond_with_same_area_if_none(positive, c)
2023-04-19 13:36:19 +00:00
apply_empty_x_to_equal_area(positive, negative, 'control', lambda cond_cnets, x: cond_cnets[x])
apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
2023-02-16 15:38:08 +00:00
2023-06-09 16:24:24 +00:00
if self.model.get_dtype() == torch.float16:
2023-01-03 06:53:32 +00:00
precision_scope = torch.autocast
else:
precision_scope = contextlib.nullcontext
2023-06-09 16:24:24 +00:00
if self.model.is_adm():
positive = encode_adm(self.model, positive, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "positive")
negative = encode_adm(self.model, negative, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "negative")
if latent_image is not None:
latent_image = self.model.process_latent_in(latent_image)
extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options, "seed":seed}
2023-02-15 21:38:20 +00:00
2023-02-23 02:06:43 +00:00
cond_concat = None
if hasattr(self.model, 'concat_keys'): #inpaint
2023-02-15 21:38:20 +00:00
cond_concat = []
for ck in self.model.concat_keys:
if denoise_mask is not None:
if ck == "mask":
cond_concat.append(denoise_mask[:,:1])
elif ck == "masked_image":
cond_concat.append(latent_image) #NOTE: the latent_image should be masked by the mask in pixel space
2023-02-15 21:38:20 +00:00
else:
if ck == "mask":
cond_concat.append(torch.ones_like(noise)[:,:1])
elif ck == "masked_image":
cond_concat.append(blank_inpaint_image_like(noise))
extra_args["cond_concat"] = cond_concat
if sigmas[0] != self.sigmas[0] or (self.denoise is not None and self.denoise < 1.0):
max_denoise = False
else:
max_denoise = True
with precision_scope(model_management.get_autocast_device(self.device)):
2023-02-11 08:18:27 +00:00
if self.sampler == "uni_pc":
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)
2023-02-21 21:11:48 +00:00
elif self.sampler == "uni_pc_bh2":
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)
2023-02-23 02:06:43 +00:00
elif self.sampler == "ddim":
timesteps = []
for s in range(sigmas.shape[0]):
timesteps.insert(0, self.model_wrap.sigma_to_t(sigmas[s]))
noise_mask = None
if denoise_mask is not None:
noise_mask = 1.0 - denoise_mask
ddim_callback = None
if callback is not None:
total_steps = len(timesteps) - 1
ddim_callback = lambda pred_x0, i: callback(i, pred_x0, None, total_steps)
2023-03-24 15:39:51 +00:00
sampler = DDIMSampler(self.model, device=self.device)
2023-02-23 02:06:43 +00:00
sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False)
z_enc = sampler.stochastic_encode(latent_image, torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(self.device), noise=noise, max_denoise=max_denoise)
samples, _ = sampler.sample_custom(ddim_timesteps=timesteps,
conditioning=positive,
batch_size=noise.shape[0],
shape=noise.shape[1:],
verbose=False,
unconditional_guidance_scale=cfg,
unconditional_conditioning=negative,
eta=0.0,
x_T=z_enc,
x0=latent_image,
img_callback=ddim_callback,
2023-02-23 02:06:43 +00:00
denoise_function=sampling_function,
extra_args=extra_args,
2023-02-23 02:06:43 +00:00
mask=noise_mask,
to_zero=sigmas[-1]==0,
end_step=sigmas.shape[0] - 1,
disable_pbar=disable_pbar)
2023-02-23 02:06:43 +00:00
2023-01-03 06:53:32 +00:00
else:
extra_args["denoise_mask"] = denoise_mask
self.model_k.latent_image = latent_image
self.model_k.noise = noise
if max_denoise:
noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0)
else:
noise = noise * sigmas[0]
k_callback = None
total_steps = len(sigmas) - 1
if callback is not None:
k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)
2023-02-11 08:18:27 +00:00
if latent_image is not None:
noise += latent_image
if self.sampler == "dpm_fast":
samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
elif self.sampler == "dpm_adaptive":
samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar)
2023-02-11 08:18:27 +00:00
else:
samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
return self.model.process_latent_out(samples.to(torch.float32))