Set the seed in the SDE samplers to make them more reproducible.
This commit is contained in:
parent
cef6aa62b2
commit
4eab00e14b
|
@ -77,7 +77,7 @@ class BatchedBrownianTree:
|
|||
except TypeError:
|
||||
seed = [seed]
|
||||
self.batched = False
|
||||
self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
|
||||
self.trees = [torchsde.BrownianTree(t0.cpu(), w0.cpu(), t1.cpu(), entropy=s, **kwargs) for s in seed]
|
||||
|
||||
@staticmethod
|
||||
def sort(a, b):
|
||||
|
@ -85,7 +85,7 @@ class BatchedBrownianTree:
|
|||
|
||||
def __call__(self, t0, t1):
|
||||
t0, t1, sign = self.sort(t0, t1)
|
||||
w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
|
||||
w = torch.stack([tree(t0.cpu().float(), t1.cpu().float()).to(t0.dtype).to(t0.device) for tree in self.trees]) * (self.sign * sign)
|
||||
return w if self.batched else w[0]
|
||||
|
||||
|
||||
|
@ -543,7 +543,8 @@ def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None,
|
|||
def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
|
||||
"""DPM-Solver++ (stochastic)."""
|
||||
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler
|
||||
seed = extra_args.get("seed", None)
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed) if noise_sampler is None else noise_sampler
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
sigma_fn = lambda t: t.neg().exp()
|
||||
|
@ -613,8 +614,9 @@ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
|
|||
if solver_type not in {'heun', 'midpoint'}:
|
||||
raise ValueError('solver_type must be \'heun\' or \'midpoint\'')
|
||||
|
||||
seed = extra_args.get("seed", None)
|
||||
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed) if noise_sampler is None else noise_sampler
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
|
|
|
@ -65,7 +65,7 @@ def cleanup_additional_models(models):
|
|||
for m in models:
|
||||
m.cleanup()
|
||||
|
||||
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False):
|
||||
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
|
||||
device = comfy.model_management.get_torch_device()
|
||||
|
||||
if noise_mask is not None:
|
||||
|
@ -85,7 +85,7 @@ def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative
|
|||
|
||||
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
|
||||
|
||||
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar)
|
||||
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar, seed=seed)
|
||||
samples = samples.cpu()
|
||||
|
||||
cleanup_additional_models(models)
|
||||
|
|
|
@ -13,7 +13,7 @@ def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
|
|||
|
||||
#The main sampling function shared by all the samplers
|
||||
#Returns predicted noise
|
||||
def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={}):
|
||||
def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={}, seed=None):
|
||||
def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in):
|
||||
area = (x_in.shape[2], x_in.shape[3], 0, 0)
|
||||
strength = 1.0
|
||||
|
@ -292,8 +292,8 @@ class CFGNoisePredictor(torch.nn.Module):
|
|||
super().__init__()
|
||||
self.inner_model = model
|
||||
self.alphas_cumprod = model.alphas_cumprod
|
||||
def apply_model(self, x, timestep, cond, uncond, cond_scale, cond_concat=None, model_options={}):
|
||||
out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, cond_concat, model_options=model_options)
|
||||
def apply_model(self, x, timestep, cond, uncond, cond_scale, cond_concat=None, model_options={}, seed=None):
|
||||
out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, cond_concat, model_options=model_options, seed=seed)
|
||||
return out
|
||||
|
||||
|
||||
|
@ -301,11 +301,11 @@ class KSamplerX0Inpaint(torch.nn.Module):
|
|||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.inner_model = model
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, cond_concat=None, model_options={}):
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, cond_concat=None, model_options={}, seed=None):
|
||||
if denoise_mask is not None:
|
||||
latent_mask = 1. - denoise_mask
|
||||
x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask
|
||||
out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, cond_concat=cond_concat, model_options=model_options)
|
||||
out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, cond_concat=cond_concat, model_options=model_options, seed=seed)
|
||||
if denoise_mask is not None:
|
||||
out *= denoise_mask
|
||||
|
||||
|
@ -542,7 +542,7 @@ class KSampler:
|
|||
sigmas = self.calculate_sigmas(new_steps).to(self.device)
|
||||
self.sigmas = sigmas[-(steps + 1):]
|
||||
|
||||
def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False):
|
||||
def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
|
||||
if sigmas is None:
|
||||
sigmas = self.sigmas
|
||||
sigma_min = self.sigma_min
|
||||
|
@ -589,7 +589,7 @@ class KSampler:
|
|||
if latent_image is not None:
|
||||
latent_image = self.model.process_latent_in(latent_image)
|
||||
|
||||
extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options}
|
||||
extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options, "seed":seed}
|
||||
|
||||
cond_concat = None
|
||||
if hasattr(self.model, 'concat_keys'): #inpaint
|
||||
|
|
2
nodes.py
2
nodes.py
|
@ -965,7 +965,7 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive,
|
|||
|
||||
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
|
||||
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
|
||||
force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback)
|
||||
force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, seed=seed)
|
||||
out = latent.copy()
|
||||
out["samples"] = samples
|
||||
return (out, )
|
||||
|
|
Loading…
Reference in New Issue