ComfyUI/comfy/sample.py

119 lines
5.5 KiB
Python
Raw Normal View History

import torch
import comfy.model_management
2023-04-25 03:25:51 +00:00
import comfy.samplers
import comfy.conds
import comfy.utils
2023-04-25 05:12:40 +00:00
import math
import numpy as np
def prepare_noise(latent_image, seed, noise_inds=None):
2023-04-24 10:53:10 +00:00
"""
creates random noise given a latent image and a seed.
optional arg skip can be used to skip and discard x number of noise generations for a given seed
"""
2023-04-23 18:09:09 +00:00
generator = torch.manual_seed(seed)
if noise_inds is None:
return torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
unique_inds, inverse = np.unique(noise_inds, return_inverse=True)
noises = []
for i in range(unique_inds[-1]+1):
2023-04-23 18:09:09 +00:00
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
if i in unique_inds:
noises.append(noise)
noises = [noises[i] for i in inverse]
noises = torch.cat(noises, axis=0)
return noises
2023-04-25 03:25:51 +00:00
def prepare_mask(noise_mask, shape, device):
2023-04-24 10:53:10 +00:00
"""ensures noise mask is of proper dimensions"""
2023-04-25 05:12:40 +00:00
noise_mask = torch.nn.functional.interpolate(noise_mask.reshape((-1, 1, noise_mask.shape[-2], noise_mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear")
2023-04-24 10:53:10 +00:00
noise_mask = noise_mask.round()
2023-04-25 03:25:51 +00:00
noise_mask = torch.cat([noise_mask] * shape[1], dim=1)
noise_mask = comfy.utils.repeat_to_batch_size(noise_mask, shape[0])
2023-04-24 10:53:10 +00:00
noise_mask = noise_mask.to(device)
return noise_mask
2023-04-24 10:53:10 +00:00
def get_models_from_cond(cond, model_type):
models = []
for c in cond:
if model_type in c:
models += [c[model_type]]
2023-04-24 10:53:10 +00:00
return models
def convert_cond(cond):
out = []
for c in cond:
temp = c[1].copy()
model_conds = temp.get("model_conds", {})
if c[0] is not None:
model_conds["c_crossattn"] = comfy.conds.CONDCrossAttn(c[0])
temp["model_conds"] = model_conds
out.append(temp)
return out
def get_additional_models(positive, negative, dtype):
2023-04-23 18:09:09 +00:00
"""loads additional models in positive and negative conditioning"""
control_nets = set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control"))
inference_memory = 0
control_models = []
for m in control_nets:
control_models += m.get_models()
inference_memory += m.inference_memory_requirements(dtype)
2023-04-24 19:47:57 +00:00
gligen = get_models_from_cond(positive, "gligen") + get_models_from_cond(negative, "gligen")
gligen = [x[1] for x in gligen]
models = control_models + gligen
return models, inference_memory
def cleanup_additional_models(models):
2023-04-23 18:09:09 +00:00
"""cleanup additional models that were loaded"""
for m in models:
if hasattr(m, 'cleanup'):
m.cleanup()
2023-04-25 03:25:51 +00:00
2023-09-27 20:45:22 +00:00
def prepare_sampling(model, noise_shape, positive, negative, noise_mask):
device = model.load_device
positive = convert_cond(positive)
negative = convert_cond(negative)
2023-04-25 03:25:51 +00:00
if noise_mask is not None:
2023-09-27 20:45:22 +00:00
noise_mask = prepare_mask(noise_mask, noise_shape, device)
2023-04-25 03:25:51 +00:00
real_model = None
models, inference_memory = get_additional_models(positive, negative, model.model_dtype())
comfy.model_management.load_models_gpu([model] + models, model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory)
2023-04-25 03:25:51 +00:00
real_model = model.model
return real_model, positive, negative, noise_mask, models
2023-09-27 20:45:22 +00:00
2023-04-25 03:25:51 +00:00
2023-09-27 20:45:22 +00:00
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
real_model, positive_copy, negative_copy, noise_mask, models = prepare_sampling(model, noise.shape, positive, negative, noise_mask)
2023-04-25 03:25:51 +00:00
2023-09-27 20:45:22 +00:00
noise = noise.to(model.load_device)
latent_image = latent_image.to(model.load_device)
2023-04-25 03:25:51 +00:00
2023-09-27 20:45:22 +00:00
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=model.load_device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
2023-04-25 03:25:51 +00:00
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar, seed=seed)
samples = samples.to(comfy.model_management.intermediate_device())
2023-04-25 03:25:51 +00:00
cleanup_additional_models(models)
2023-12-05 02:55:19 +00:00
cleanup_additional_models(set(get_models_from_cond(positive_copy, "control") + get_models_from_cond(negative_copy, "control")))
2023-04-25 03:25:51 +00:00
return samples
def sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=None, callback=None, disable_pbar=False, seed=None):
real_model, positive_copy, negative_copy, noise_mask, models = prepare_sampling(model, noise.shape, positive, negative, noise_mask)
noise = noise.to(model.load_device)
latent_image = latent_image.to(model.load_device)
sigmas = sigmas.to(model.load_device)
samples = comfy.samplers.sample(real_model, noise, positive_copy, negative_copy, cfg, model.load_device, sampler, sigmas, model_options=model.model_options, latent_image=latent_image, denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
samples = samples.to(comfy.model_management.intermediate_device())
cleanup_additional_models(models)
2023-12-05 02:55:19 +00:00
cleanup_additional_models(set(get_models_from_cond(positive_copy, "control") + get_models_from_cond(negative_copy, "control")))
return samples