2023-04-23 18:02:08 +00:00
|
|
|
import torch
|
|
|
|
import comfy.model_management
|
|
|
|
|
|
|
|
|
2023-04-24 10:53:10 +00:00
|
|
|
def prepare_noise(latent_image, seed, skip=0):
|
|
|
|
"""
|
|
|
|
creates random noise given a latent image and a seed.
|
|
|
|
optional arg skip can be used to skip and discard x number of noise generations for a given seed
|
|
|
|
"""
|
2023-04-23 18:09:09 +00:00
|
|
|
generator = torch.manual_seed(seed)
|
2023-04-24 10:53:10 +00:00
|
|
|
for _ in range(skip):
|
2023-04-23 18:09:09 +00:00
|
|
|
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
|
|
|
|
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
|
2023-04-23 18:02:08 +00:00
|
|
|
return noise
|
|
|
|
|
2023-04-24 10:53:10 +00:00
|
|
|
def prepare_mask(noise_mask, noise):
|
|
|
|
"""ensures noise mask is of proper dimensions"""
|
2023-04-23 18:02:08 +00:00
|
|
|
device = comfy.model_management.get_torch_device()
|
2023-04-24 10:53:10 +00:00
|
|
|
noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear")
|
|
|
|
noise_mask = noise_mask.round()
|
|
|
|
noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
|
|
|
|
noise_mask = torch.cat([noise_mask] * noise.shape[0])
|
|
|
|
noise_mask = noise_mask.to(device)
|
2023-04-23 18:02:08 +00:00
|
|
|
return noise_mask
|
|
|
|
|
|
|
|
def broadcast_cond(cond, noise):
|
2023-04-23 18:09:09 +00:00
|
|
|
"""broadcasts conditioning to the noise batch size"""
|
2023-04-23 18:02:08 +00:00
|
|
|
device = comfy.model_management.get_torch_device()
|
|
|
|
copy = []
|
|
|
|
for p in cond:
|
|
|
|
t = p[0]
|
|
|
|
if t.shape[0] < noise.shape[0]:
|
|
|
|
t = torch.cat([t] * noise.shape[0])
|
|
|
|
t = t.to(device)
|
|
|
|
copy += [[t] + p[1:]]
|
|
|
|
return copy
|
|
|
|
|
2023-04-24 10:53:10 +00:00
|
|
|
def get_models_from_cond(cond, model_type):
|
|
|
|
models = []
|
|
|
|
for c in cond:
|
|
|
|
if model_type in c[1]:
|
|
|
|
models += [c[1][model_type]]
|
|
|
|
return models
|
2023-04-23 18:02:08 +00:00
|
|
|
|
|
|
|
def load_additional_models(positive, negative):
|
2023-04-23 18:09:09 +00:00
|
|
|
"""loads additional models in positive and negative conditioning"""
|
2023-04-24 19:47:57 +00:00
|
|
|
control_nets = get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control")
|
|
|
|
gligen = get_models_from_cond(positive, "gligen") + get_models_from_cond(negative, "gligen")
|
|
|
|
gligen = [x[1] for x in gligen]
|
|
|
|
models = control_nets + gligen
|
2023-04-23 18:02:08 +00:00
|
|
|
comfy.model_management.load_controlnet_gpu(models)
|
|
|
|
return models
|
|
|
|
|
|
|
|
def cleanup_additional_models(models):
|
2023-04-23 18:09:09 +00:00
|
|
|
"""cleanup additional models that were loaded"""
|
2023-04-23 18:02:08 +00:00
|
|
|
for m in models:
|
|
|
|
m.cleanup()
|