ComfyUI/comfy/model_management.py

876 lines
27 KiB
Python
Raw Normal View History

import psutil
import logging
from enum import Enum
2023-05-05 04:19:35 +00:00
from comfy.cli_args import args
2023-08-26 15:52:07 +00:00
import comfy.utils
import torch
import sys
class VRAMState(Enum):
DISABLED = 0 #No vram present: no need to move models to vram
NO_VRAM = 1 #Very low vram: enable all the options to save vram
LOW_VRAM = 2
NORMAL_VRAM = 3
HIGH_VRAM = 4
SHARED = 5 #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
class CPUState(Enum):
GPU = 0
CPU = 1
MPS = 2
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
cpu_state = CPUState.GPU
total_vram = 0
lowvram_available = True
2023-04-07 01:11:30 +00:00
xpu_available = False
if args.deterministic:
logging.info("Using deterministic algorithms for pytorch")
torch.use_deterministic_algorithms(True, warn_only=True)
directml_enabled = False
if args.directml is not None:
import torch_directml
directml_enabled = True
device_index = args.directml
if device_index < 0:
directml_device = torch_directml.device()
else:
directml_device = torch_directml.device(device_index)
logging.info("Using directml with device: {}".format(torch_directml.device_name(device_index)))
# torch_directml.disable_tiled_resources(True)
lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
try:
import intel_extension_for_pytorch as ipex
if torch.xpu.is_available():
xpu_available = True
except:
pass
try:
if torch.backends.mps.is_available():
cpu_state = CPUState.MPS
2023-07-12 02:06:34 +00:00
import torch.mps
except:
pass
if args.cpu:
cpu_state = CPUState.CPU
def is_intel_xpu():
global cpu_state
global xpu_available
if cpu_state == CPUState.GPU:
if xpu_available:
return True
return False
def get_torch_device():
global directml_enabled
global cpu_state
if directml_enabled:
global directml_device
return directml_device
if cpu_state == CPUState.MPS:
return torch.device("mps")
if cpu_state == CPUState.CPU:
return torch.device("cpu")
else:
if is_intel_xpu():
return torch.device("xpu", torch.xpu.current_device())
else:
return torch.device(torch.cuda.current_device())
def get_total_memory(dev=None, torch_total_too=False):
global directml_enabled
if dev is None:
dev = get_torch_device()
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
mem_total = psutil.virtual_memory().total
mem_total_torch = mem_total
else:
if directml_enabled:
mem_total = 1024 * 1024 * 1024 #TODO
mem_total_torch = mem_total
elif is_intel_xpu():
stats = torch.xpu.memory_stats(dev)
mem_reserved = stats['reserved_bytes.all.current']
mem_total = torch.xpu.get_device_properties(dev).total_memory
mem_total_torch = mem_reserved
else:
stats = torch.cuda.memory_stats(dev)
mem_reserved = stats['reserved_bytes.all.current']
_, mem_total_cuda = torch.cuda.mem_get_info(dev)
mem_total_torch = mem_reserved
mem_total = mem_total_cuda
if torch_total_too:
return (mem_total, mem_total_torch)
else:
return mem_total
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
if not args.normalvram and not args.cpu:
if lowvram_available and total_vram <= 4096:
logging.warning("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
set_vram_to = VRAMState.LOW_VRAM
try:
OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
OOM_EXCEPTION = Exception
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
if args.disable_xformers:
XFORMERS_IS_AVAILABLE = False
else:
try:
import xformers
import xformers.ops
XFORMERS_IS_AVAILABLE = True
try:
XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
except:
pass
try:
XFORMERS_VERSION = xformers.version.__version__
logging.info("xformers version: {}".format(XFORMERS_VERSION))
if XFORMERS_VERSION.startswith("0.0.18"):
logging.warning("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
logging.warning("Please downgrade or upgrade xformers to a different version.\n")
XFORMERS_ENABLED_VAE = False
except:
pass
except:
XFORMERS_IS_AVAILABLE = False
def is_nvidia():
global cpu_state
if cpu_state == CPUState.GPU:
if torch.version.cuda:
return True
return False
ENABLE_PYTORCH_ATTENTION = False
if args.use_pytorch_cross_attention:
ENABLE_PYTORCH_ATTENTION = True
XFORMERS_IS_AVAILABLE = False
VAE_DTYPE = torch.float32
try:
if is_nvidia():
torch_version = torch.version.__version__
if int(torch_version[0]) >= 2:
if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
ENABLE_PYTORCH_ATTENTION = True
if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8:
VAE_DTYPE = torch.bfloat16
if is_intel_xpu():
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
ENABLE_PYTORCH_ATTENTION = True
except:
pass
if is_intel_xpu():
VAE_DTYPE = torch.bfloat16
if args.cpu_vae:
VAE_DTYPE = torch.float32
if args.fp16_vae:
VAE_DTYPE = torch.float16
elif args.bf16_vae:
VAE_DTYPE = torch.bfloat16
elif args.fp32_vae:
VAE_DTYPE = torch.float32
if ENABLE_PYTORCH_ATTENTION:
2023-03-13 16:25:19 +00:00
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_mem_efficient_sdp(True)
if args.lowvram:
set_vram_to = VRAMState.LOW_VRAM
lowvram_available = True
elif args.novram:
set_vram_to = VRAMState.NO_VRAM
elif args.highvram or args.gpu_only:
vram_state = VRAMState.HIGH_VRAM
FORCE_FP32 = False
FORCE_FP16 = False
if args.force_fp32:
logging.info("Forcing FP32, if this improves things please report it.")
FORCE_FP32 = True
if args.force_fp16:
logging.info("Forcing FP16.")
FORCE_FP16 = True
if lowvram_available:
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
vram_state = set_vram_to
if cpu_state != CPUState.GPU:
vram_state = VRAMState.DISABLED
if cpu_state == CPUState.MPS:
vram_state = VRAMState.SHARED
logging.info(f"Set vram state to: {vram_state.name}")
DISABLE_SMART_MEMORY = args.disable_smart_memory
if DISABLE_SMART_MEMORY:
logging.info("Disabling smart memory management")
def get_torch_device_name(device):
if hasattr(device, 'type'):
if device.type == "cuda":
2023-07-17 19:18:58 +00:00
try:
allocator_backend = torch.cuda.get_allocator_backend()
except:
allocator_backend = ""
return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
else:
return "{}".format(device.type)
elif is_intel_xpu():
return "{} {}".format(device, torch.xpu.get_device_name(device))
else:
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
try:
logging.info("Device: {}".format(get_torch_device_name(get_torch_device())))
except:
logging.warning("Could not pick default device.")
logging.info("VAE dtype: {}".format(VAE_DTYPE))
current_loaded_models = []
def module_size(module):
module_mem = 0
sd = module.state_dict()
for k in sd:
t = sd[k]
module_mem += t.nelement() * t.element_size()
return module_mem
class LoadedModel:
def __init__(self, model):
self.model = model
self.device = model.load_device
self.weights_loaded = False
self.real_model = None
def model_memory(self):
return self.model.model_size()
def model_memory_required(self, device):
if device == self.model.current_device:
return 0
else:
return self.model_memory()
def model_load(self, lowvram_model_memory=0):
patch_model_to = self.device
self.model.model_patches_to(self.device)
self.model.model_patches_to(self.model.model_dtype())
load_weights = not self.weights_loaded
try:
if lowvram_model_memory > 0 and load_weights:
self.real_model = self.model.patch_model_lowvram(device_to=patch_model_to, lowvram_model_memory=lowvram_model_memory)
else:
self.real_model = self.model.patch_model(device_to=patch_model_to, patch_weights=load_weights)
except Exception as e:
self.model.unpatch_model(self.model.offload_device)
self.model_unload()
raise e
if is_intel_xpu() and not args.disable_ipex_optimize:
self.real_model = ipex.optimize(self.real_model.eval(), graph_mode=True, concat_linear=True)
self.weights_loaded = True
return self.real_model
def model_unload(self, unpatch_weights=True):
self.model.unpatch_model(self.model.offload_device, unpatch_weights=unpatch_weights)
self.model.model_patches_to(self.model.offload_device)
self.weights_loaded = self.weights_loaded and not unpatch_weights
self.real_model = None
def __eq__(self, other):
return self.model is other.model
2023-07-15 17:24:05 +00:00
def minimum_inference_memory():
return (1024 * 1024 * 1024)
2024-03-20 17:53:45 +00:00
def unload_model_clones(model, unload_weights_only=True, force_unload=True):
to_unload = []
for i in range(len(current_loaded_models)):
if model.is_clone(current_loaded_models[i].model):
to_unload = [i] + to_unload
if len(to_unload) == 0:
return True
same_weights = 0
for i in to_unload:
if model.clone_has_same_weights(current_loaded_models[i].model):
same_weights += 1
if same_weights == len(to_unload):
unload_weight = False
else:
unload_weight = True
2024-03-20 17:53:45 +00:00
if not force_unload:
if unload_weights_only and unload_weight == False:
return None
for i in to_unload:
logging.debug("unload clone {} {}".format(i, unload_weight))
current_loaded_models.pop(i).model_unload(unpatch_weights=unload_weight)
2024-03-20 17:53:45 +00:00
return unload_weight
def free_memory(memory_required, device, keep_loaded=[]):
unloaded_model = []
can_unload = []
for i in range(len(current_loaded_models) -1, -1, -1):
shift_model = current_loaded_models[i]
if shift_model.device == device:
if shift_model not in keep_loaded:
can_unload.append((sys.getrefcount(shift_model.model), shift_model.model_memory(), i))
for x in sorted(can_unload):
i = x[-1]
if not DISABLE_SMART_MEMORY:
if get_free_memory(device) > memory_required:
break
current_loaded_models[i].model_unload()
unloaded_model.append(i)
for i in sorted(unloaded_model, reverse=True):
current_loaded_models.pop(i)
if len(unloaded_model) > 0:
soft_empty_cache()
else:
if vram_state != VRAMState.HIGH_VRAM:
mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
if mem_free_torch > mem_free_total * 0.25:
soft_empty_cache()
def load_models_gpu(models, memory_required=0):
2023-02-17 20:45:29 +00:00
global vram_state
inference_memory = minimum_inference_memory()
extra_mem = max(inference_memory, memory_required)
models = set(models)
models_to_load = []
models_already_loaded = []
for x in models:
loaded_model = LoadedModel(x)
if loaded_model in current_loaded_models:
index = current_loaded_models.index(loaded_model)
current_loaded_models.insert(0, current_loaded_models.pop(index))
models_already_loaded.append(loaded_model)
else:
if hasattr(x, "model"):
logging.info(f"Requested to load {x.model.__class__.__name__}")
models_to_load.append(loaded_model)
if len(models_to_load) == 0:
devs = set(map(lambda a: a.device, models_already_loaded))
for d in devs:
if d != torch.device("cpu"):
free_memory(extra_mem, d, models_already_loaded)
2023-02-17 20:45:29 +00:00
return
logging.info(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
2023-04-19 13:36:19 +00:00
total_memory_required = {}
for loaded_model in models_to_load:
if unload_model_clones(loaded_model.model, unload_weights_only=True, force_unload=False) == True:#unload clones where the weights are different
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
2023-02-16 15:38:08 +00:00
for device in total_memory_required:
if device != torch.device("cpu"):
free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
2023-02-16 15:38:08 +00:00
for loaded_model in models_to_load:
2024-03-20 17:53:45 +00:00
weights_unloaded = unload_model_clones(loaded_model.model, unload_weights_only=False, force_unload=False) #unload the rest of the clones where the weights can stay loaded
if weights_unloaded is not None:
loaded_model.weights_loaded = not weights_unloaded
for loaded_model in models_to_load:
model = loaded_model.model
torch_dev = model.load_device
if is_device_cpu(torch_dev):
vram_set_state = VRAMState.DISABLED
else:
vram_set_state = vram_state
lowvram_model_memory = 0
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
model_size = loaded_model.model_memory_required(torch_dev)
current_free_mem = get_free_memory(torch_dev)
lowvram_model_memory = int(max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
vram_set_state = VRAMState.LOW_VRAM
else:
lowvram_model_memory = 0
if vram_set_state == VRAMState.NO_VRAM:
lowvram_model_memory = 64 * 1024 * 1024
2023-02-17 20:45:29 +00:00
cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
current_loaded_models.insert(0, loaded_model)
return
def load_model_gpu(model):
return load_models_gpu([model])
def cleanup_models(keep_clone_weights_loaded=False):
to_delete = []
for i in range(len(current_loaded_models)):
if sys.getrefcount(current_loaded_models[i].model) <= 2:
if not keep_clone_weights_loaded:
to_delete = [i] + to_delete
#TODO: find a less fragile way to do this.
elif sys.getrefcount(current_loaded_models[i].real_model) <= 3: #references from .real_model + the .model
to_delete = [i] + to_delete
for i in to_delete:
x = current_loaded_models.pop(i)
x.model_unload()
del x
2023-02-17 20:45:29 +00:00
def dtype_size(dtype):
dtype_size = 4
if dtype == torch.float16 or dtype == torch.bfloat16:
dtype_size = 2
elif dtype == torch.float32:
dtype_size = 4
else:
try:
dtype_size = dtype.itemsize
except: #Old pytorch doesn't have .itemsize
pass
return dtype_size
def unet_offload_device():
2023-07-03 04:08:30 +00:00
if vram_state == VRAMState.HIGH_VRAM:
return get_torch_device()
else:
return torch.device("cpu")
def unet_inital_load_device(parameters, dtype):
torch_dev = get_torch_device()
if vram_state == VRAMState.HIGH_VRAM:
return torch_dev
cpu_dev = torch.device("cpu")
if DISABLE_SMART_MEMORY:
return cpu_dev
model_size = dtype_size(dtype) * parameters
mem_dev = get_free_memory(torch_dev)
mem_cpu = get_free_memory(cpu_dev)
if mem_dev > mem_cpu and model_size < mem_dev:
return torch_dev
else:
return cpu_dev
2024-02-16 15:55:08 +00:00
def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
if args.bf16_unet:
return torch.bfloat16
if args.fp16_unet:
return torch.float16
if args.fp8_e4m3fn_unet:
return torch.float8_e4m3fn
if args.fp8_e5m2_unet:
return torch.float8_e5m2
if should_use_fp16(device=device, model_params=model_params, manual_cast=True):
2024-02-16 15:55:08 +00:00
if torch.float16 in supported_dtypes:
return torch.float16
2024-02-17 13:13:17 +00:00
if should_use_bf16(device, model_params=model_params, manual_cast=True):
2024-02-16 15:55:08 +00:00
if torch.bfloat16 in supported_dtypes:
return torch.bfloat16
return torch.float32
# None means no manual cast
2024-02-16 15:55:08 +00:00
def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
if weight_dtype == torch.float32:
return None
2024-02-16 15:55:08 +00:00
fp16_supported = should_use_fp16(inference_device, prioritize_performance=False)
if fp16_supported and weight_dtype == torch.float16:
return None
2024-02-16 15:55:08 +00:00
bf16_supported = should_use_bf16(inference_device)
if bf16_supported and weight_dtype == torch.bfloat16:
return None
if fp16_supported and torch.float16 in supported_dtypes:
return torch.float16
2024-02-16 15:55:08 +00:00
elif bf16_supported and torch.bfloat16 in supported_dtypes:
return torch.bfloat16
else:
return torch.float32
def text_encoder_offload_device():
2023-07-03 04:08:30 +00:00
if args.gpu_only:
return get_torch_device()
else:
return torch.device("cpu")
def text_encoder_device():
2023-07-03 04:08:30 +00:00
if args.gpu_only:
return get_torch_device()
elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
if should_use_fp16(prioritize_performance=False):
return get_torch_device()
else:
return torch.device("cpu")
else:
return torch.device("cpu")
def text_encoder_dtype(device=None):
if args.fp8_e4m3fn_text_enc:
return torch.float8_e4m3fn
elif args.fp8_e5m2_text_enc:
return torch.float8_e5m2
elif args.fp16_text_enc:
return torch.float16
elif args.fp32_text_enc:
return torch.float32
if is_device_cpu(device):
return torch.float16
2024-02-02 15:02:49 +00:00
return torch.float16
def intermediate_device():
if args.gpu_only:
return get_torch_device()
else:
return torch.device("cpu")
def vae_device():
if args.cpu_vae:
return torch.device("cpu")
return get_torch_device()
def vae_offload_device():
2023-07-03 04:08:30 +00:00
if args.gpu_only:
return get_torch_device()
else:
return torch.device("cpu")
def vae_dtype():
global VAE_DTYPE
return VAE_DTYPE
def get_autocast_device(dev):
if hasattr(dev, 'type'):
return dev.type
return "cuda"
2023-02-17 20:45:29 +00:00
def supports_dtype(device, dtype): #TODO
if dtype == torch.float32:
return True
if is_device_cpu(device):
return False
if dtype == torch.float16:
return True
if dtype == torch.bfloat16:
return True
return False
def device_supports_non_blocking(device):
if is_device_mps(device):
return False #pytorch bug? mps doesn't support non blocking
2024-04-14 16:08:58 +00:00
return False
# return True #TODO: figure out why this causes issues
def cast_to_device(tensor, device, dtype, copy=False):
device_supports_cast = False
if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
device_supports_cast = True
elif tensor.dtype == torch.bfloat16:
if hasattr(device, 'type') and device.type.startswith("cuda"):
device_supports_cast = True
elif is_intel_xpu():
device_supports_cast = True
non_blocking = device_supports_non_blocking(device)
2023-12-10 06:30:35 +00:00
if device_supports_cast:
if copy:
if tensor.device == device:
2023-12-10 06:30:35 +00:00
return tensor.to(dtype, copy=copy, non_blocking=non_blocking)
return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
else:
2023-12-10 06:30:35 +00:00
return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
else:
2023-12-10 06:30:35 +00:00
return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking)
def xformers_enabled():
global directml_enabled
global cpu_state
if cpu_state != CPUState.GPU:
return False
if is_intel_xpu():
return False
if directml_enabled:
return False
return XFORMERS_IS_AVAILABLE
def xformers_enabled_vae():
enabled = xformers_enabled()
if not enabled:
return False
return XFORMERS_ENABLED_VAE
2023-03-13 16:25:19 +00:00
def pytorch_attention_enabled():
global ENABLE_PYTORCH_ATTENTION
2023-03-13 16:25:19 +00:00
return ENABLE_PYTORCH_ATTENTION
def pytorch_attention_flash_attention():
global ENABLE_PYTORCH_ATTENTION
if ENABLE_PYTORCH_ATTENTION:
#TODO: more reliable way of checking for flash attention?
if is_nvidia(): #pytorch flash attention only works on Nvidia
return True
return False
def get_free_memory(dev=None, torch_free_too=False):
global directml_enabled
if dev is None:
dev = get_torch_device()
2023-03-24 12:04:50 +00:00
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
mem_free_total = psutil.virtual_memory().available
mem_free_torch = mem_free_total
else:
if directml_enabled:
mem_free_total = 1024 * 1024 * 1024 #TODO
mem_free_torch = mem_free_total
elif is_intel_xpu():
stats = torch.xpu.memory_stats(dev)
mem_active = stats['active_bytes.all.current']
mem_allocated = stats['allocated_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_torch = mem_reserved - mem_active
2023-08-20 04:35:22 +00:00
mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated
else:
stats = torch.cuda.memory_stats(dev)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
if torch_free_too:
return (mem_free_total, mem_free_torch)
else:
return mem_free_total
def cpu_mode():
global cpu_state
return cpu_state == CPUState.CPU
2023-03-24 12:04:50 +00:00
def mps_mode():
global cpu_state
return cpu_state == CPUState.MPS
2023-03-24 12:04:50 +00:00
def is_device_type(device, type):
if hasattr(device, 'type'):
if (device.type == type):
2023-07-04 06:09:02 +00:00
return True
return False
def is_device_cpu(device):
return is_device_type(device, 'cpu')
2023-07-04 06:09:02 +00:00
def is_device_mps(device):
return is_device_type(device, 'mps')
def is_device_cuda(device):
return is_device_type(device, 'cuda')
def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
global directml_enabled
if device is not None:
if is_device_cpu(device):
return False
if FORCE_FP16:
return True
2024-02-19 17:00:48 +00:00
if device is not None:
if is_device_mps(device):
2024-02-19 17:00:48 +00:00
return True
if FORCE_FP32:
return False
if directml_enabled:
return False
2024-02-19 17:00:48 +00:00
if mps_mode():
return True
if cpu_mode():
return False
if is_intel_xpu():
2023-08-20 18:56:47 +00:00
return True
if torch.version.hip:
return True
2023-03-03 18:18:01 +00:00
props = torch.cuda.get_device_properties("cuda")
if props.major >= 8:
return True
if props.major < 6:
return False
fp16_works = False
#FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
#when the model doesn't actually fit on the card
#TODO: actually test if GP106 and others have the same type of behavior
nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"]
for x in nvidia_10_series:
if x in props.name.lower():
fp16_works = True
if fp16_works or manual_cast:
free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
if (not prioritize_performance) or model_params * 4 > free_model_memory:
return True
if props.major < 7:
return False
#FP16 is just broken on these cards
nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"]
for x in nvidia_16_series:
if x in props.name:
return False
return True
2024-02-17 13:13:17 +00:00
def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
if device is not None:
if is_device_cpu(device): #TODO ? bf16 works on CPU but is extremely slow
return False
if device is not None: #TODO not sure about mps bf16 support
if is_device_mps(device):
return False
if FORCE_FP32:
return False
2024-02-17 13:13:17 +00:00
if directml_enabled:
return False
if cpu_mode() or mps_mode():
return False
2024-02-16 15:55:08 +00:00
if is_intel_xpu():
return True
if device is None:
device = torch.device("cuda")
props = torch.cuda.get_device_properties(device)
if props.major >= 8:
return True
2024-02-17 13:13:17 +00:00
bf16_works = torch.cuda.is_bf16_supported()
if bf16_works or manual_cast:
free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
if (not prioritize_performance) or model_params * 4 > free_model_memory:
return True
2024-02-16 15:55:08 +00:00
return False
def soft_empty_cache(force=False):
global cpu_state
if cpu_state == CPUState.MPS:
2023-06-01 07:52:51 +00:00
torch.mps.empty_cache()
elif is_intel_xpu():
torch.xpu.empty_cache()
elif torch.cuda.is_available():
if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def unload_all_models():
free_memory(1e30, get_torch_device())
def resolve_lowvram_weight(weight, model, key): #TODO: remove
2023-08-26 15:52:07 +00:00
return weight
#TODO: might be cleaner to put this somewhere else
import threading
class InterruptProcessingException(Exception):
pass
interrupt_processing_mutex = threading.RLock()
interrupt_processing = False
def interrupt_current_processing(value=True):
global interrupt_processing
global interrupt_processing_mutex
with interrupt_processing_mutex:
interrupt_processing = value
def processing_interrupted():
global interrupt_processing
global interrupt_processing_mutex
with interrupt_processing_mutex:
return interrupt_processing
def throw_exception_if_processing_interrupted():
global interrupt_processing
global interrupt_processing_mutex
with interrupt_processing_mutex:
if interrupt_processing:
interrupt_processing = False
raise InterruptProcessingException()