2023-02-08 08:17:54 +00:00
|
|
|
|
2023-02-08 16:37:10 +00:00
|
|
|
CPU = 0
|
|
|
|
NO_VRAM = 1
|
|
|
|
LOW_VRAM = 2
|
|
|
|
NORMAL_VRAM = 3
|
|
|
|
|
|
|
|
accelerate_enabled = False
|
|
|
|
vram_state = NORMAL_VRAM
|
|
|
|
|
2023-02-08 16:42:37 +00:00
|
|
|
total_vram_available_mb = -1
|
|
|
|
|
2023-02-08 16:37:10 +00:00
|
|
|
import sys
|
|
|
|
|
|
|
|
set_vram_to = NORMAL_VRAM
|
|
|
|
if "--lowvram" in sys.argv:
|
|
|
|
set_vram_to = LOW_VRAM
|
|
|
|
if "--novram" in sys.argv:
|
|
|
|
set_vram_to = NO_VRAM
|
|
|
|
|
|
|
|
if set_vram_to != NORMAL_VRAM:
|
|
|
|
try:
|
|
|
|
import accelerate
|
|
|
|
accelerate_enabled = True
|
|
|
|
vram_state = set_vram_to
|
|
|
|
except Exception as e:
|
|
|
|
import traceback
|
|
|
|
print(traceback.format_exc())
|
|
|
|
print("ERROR: COULD NOT ENABLE LOW VRAM MODE.")
|
2023-02-08 16:42:37 +00:00
|
|
|
try:
|
|
|
|
import torch
|
|
|
|
total_vram_available_mb = torch.cuda.mem_get_info(torch.cuda.current_device())[1] / (1024 * 1024)
|
|
|
|
except:
|
|
|
|
pass
|
|
|
|
total_vram_available_mb = (total_vram_available_mb - 1024) // 2
|
|
|
|
total_vram_available_mb = int(max(256, total_vram_available_mb))
|
2023-02-08 16:37:10 +00:00
|
|
|
|
|
|
|
|
|
|
|
print("Set vram state to:", ["CPU", "NO VRAM", "LOW VRAM", "NORMAL VRAM"][vram_state])
|
|
|
|
|
2023-02-08 08:17:54 +00:00
|
|
|
|
|
|
|
current_loaded_model = None
|
|
|
|
|
|
|
|
|
2023-02-08 16:37:10 +00:00
|
|
|
model_accelerated = False
|
|
|
|
|
|
|
|
|
2023-02-08 08:17:54 +00:00
|
|
|
def unload_model():
|
|
|
|
global current_loaded_model
|
2023-02-08 16:37:10 +00:00
|
|
|
global model_accelerated
|
2023-02-08 08:17:54 +00:00
|
|
|
if current_loaded_model is not None:
|
2023-02-08 16:37:10 +00:00
|
|
|
if model_accelerated:
|
|
|
|
accelerate.hooks.remove_hook_from_submodules(current_loaded_model.model)
|
|
|
|
model_accelerated = False
|
|
|
|
|
2023-02-08 08:17:54 +00:00
|
|
|
current_loaded_model.model.cpu()
|
|
|
|
current_loaded_model.unpatch_model()
|
|
|
|
current_loaded_model = None
|
|
|
|
|
|
|
|
|
|
|
|
def load_model_gpu(model):
|
|
|
|
global current_loaded_model
|
2023-02-08 16:37:10 +00:00
|
|
|
global vram_state
|
|
|
|
global model_accelerated
|
|
|
|
|
2023-02-08 08:17:54 +00:00
|
|
|
if model is current_loaded_model:
|
|
|
|
return
|
|
|
|
unload_model()
|
|
|
|
try:
|
|
|
|
real_model = model.patch_model()
|
|
|
|
except Exception as e:
|
|
|
|
model.unpatch_model()
|
|
|
|
raise e
|
|
|
|
current_loaded_model = model
|
2023-02-08 16:37:10 +00:00
|
|
|
if vram_state == CPU:
|
|
|
|
pass
|
|
|
|
elif vram_state == NORMAL_VRAM:
|
|
|
|
model_accelerated = False
|
|
|
|
real_model.cuda()
|
|
|
|
else:
|
|
|
|
if vram_state == NO_VRAM:
|
|
|
|
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "256MiB", "cpu": "16GiB"})
|
|
|
|
elif vram_state == LOW_VRAM:
|
2023-02-08 16:42:37 +00:00
|
|
|
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "{}MiB".format(total_vram_available_mb), "cpu": "16GiB"})
|
2023-02-08 16:37:10 +00:00
|
|
|
accelerate.dispatch_model(real_model, device_map=device_map, main_device="cuda")
|
|
|
|
model_accelerated = True
|
2023-02-08 08:17:54 +00:00
|
|
|
return current_loaded_model
|