Add ipex optimize and other enhancements for Intel GPUs based on recent memory changes.

This commit is contained in:
Simon Lui 2023-08-17 03:12:17 -07:00 committed by comfyanonymous
parent 8ee0473687
commit 2c096e4260
2 changed files with 21 additions and 5 deletions

View File

@ -58,6 +58,8 @@ fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in
parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize when loading models with Intel GPUs.")
class LatentPreviewMethod(enum.Enum):
NoPreviews = "none"
Auto = "auto"

View File

@ -88,8 +88,10 @@ def get_total_memory(dev=None, torch_total_too=False):
mem_total = 1024 * 1024 * 1024 #TODO
mem_total_torch = mem_total
elif xpu_available:
stats = torch.xpu.memory_stats(dev)
mem_reserved = stats['reserved_bytes.all.current']
mem_total = torch.xpu.get_device_properties(dev).total_memory
mem_total_torch = mem_total
mem_total_torch = mem_reserved
else:
stats = torch.cuda.memory_stats(dev)
mem_reserved = stats['reserved_bytes.all.current']
@ -208,6 +210,7 @@ if DISABLE_SMART_MEMORY:
print("Disabling smart memory management")
def get_torch_device_name(device):
global xpu_available
if hasattr(device, 'type'):
if device.type == "cuda":
try:
@ -217,6 +220,8 @@ def get_torch_device_name(device):
return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
else:
return "{}".format(device.type)
elif xpu_available:
return "{} {}".format(device, torch.xpu.get_device_name(device))
else:
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
@ -244,6 +249,7 @@ class LoadedModel:
return self.model_memory()
def model_load(self, lowvram_model_memory=0):
global xpu_available
patch_model_to = None
if lowvram_model_memory == 0:
patch_model_to = self.device
@ -264,6 +270,10 @@ class LoadedModel:
accelerate.dispatch_model(self.real_model, device_map=device_map, main_device=self.device)
self.model_accelerated = True
if xpu_available and not args.disable_ipex_optimize:
self.real_model.training = False
self.real_model = torch.xpu.optimize(self.real_model, inplace=True)
return self.real_model
def model_unload(self):
@ -500,8 +510,12 @@ def get_free_memory(dev=None, torch_free_too=False):
mem_free_total = 1024 * 1024 * 1024 #TODO
mem_free_torch = mem_free_total
elif xpu_available:
mem_free_total = torch.xpu.get_device_properties(dev).total_memory - torch.xpu.memory_allocated(dev)
mem_free_torch = mem_free_total
stats = torch.xpu.memory_stats(dev)
mem_active = stats['active_bytes.all.current']
mem_allocated = stats['allocated_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_torch = mem_reserved - mem_active
mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated + mem_free_torch
else:
stats = torch.cuda.memory_stats(dev)
mem_active = stats['active_bytes.all.current']
@ -573,10 +587,10 @@ def should_use_fp16(device=None, model_params=0):
if directml_enabled:
return False
if cpu_mode() or mps_mode() or xpu_available:
if cpu_mode() or mps_mode():
return False #TODO ?
if torch.cuda.is_bf16_supported():
if torch.cuda.is_bf16_supported() or xpu_available:
return True
props = torch.cuda.get_device_properties("cuda")