Add experimental bislerp algorithm for latent upscaling.
It's like bilinear but with slerp.
This commit is contained in:
parent
48fcc5b777
commit
34887b8885
|
@ -46,6 +46,65 @@ def transformers_convert(sd, prefix_from, prefix_to, number):
|
|||
sd[k_to] = weights[shape_from*x:shape_from*(x + 1)]
|
||||
return sd
|
||||
|
||||
#slow and inefficient, should be optimized
|
||||
def bislerp(samples, width, height):
|
||||
shape = list(samples.shape)
|
||||
width_scale = (shape[3]) / (width )
|
||||
height_scale = (shape[2]) / (height )
|
||||
|
||||
shape[3] = width
|
||||
shape[2] = height
|
||||
out1 = torch.empty(shape, dtype=samples.dtype, layout=samples.layout, device=samples.device)
|
||||
|
||||
def algorithm(in1, w1, in2, w2):
|
||||
dims = in1.shape
|
||||
val = w2
|
||||
|
||||
#flatten to batches
|
||||
low = in1.reshape(dims[0], -1)
|
||||
high = in2.reshape(dims[0], -1)
|
||||
|
||||
low_norm = low/torch.norm(low, dim=1, keepdim=True)
|
||||
high_norm = high/torch.norm(high, dim=1, keepdim=True)
|
||||
|
||||
# in case we divide by zero
|
||||
low_norm[low_norm != low_norm] = 0.0
|
||||
high_norm[high_norm != high_norm] = 0.0
|
||||
|
||||
omega = torch.acos((low_norm*high_norm).sum(1))
|
||||
so = torch.sin(omega)
|
||||
res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
|
||||
return res.reshape(dims)
|
||||
|
||||
for x_dest in range(shape[3]):
|
||||
for y_dest in range(shape[2]):
|
||||
y = (y_dest) * height_scale
|
||||
x = (x_dest) * width_scale
|
||||
|
||||
x1 = max(math.floor(x), 0)
|
||||
x2 = min(x1 + 1, samples.shape[3] - 1)
|
||||
y1 = max(math.floor(y), 0)
|
||||
y2 = min(y1 + 1, samples.shape[2] - 1)
|
||||
|
||||
in1 = samples[:,:,y1,x1]
|
||||
in2 = samples[:,:,y1,x2]
|
||||
in3 = samples[:,:,y2,x1]
|
||||
in4 = samples[:,:,y2,x2]
|
||||
|
||||
if (x1 == x2) and (y1 == y2):
|
||||
out_value = in1
|
||||
elif (x1 == x2):
|
||||
out_value = algorithm(in1, (y2 - y), in3, (y - y1))
|
||||
elif (y1 == y2):
|
||||
out_value = algorithm(in1, (x2 - x), in2, (x - x1))
|
||||
else:
|
||||
o1 = algorithm(in1, (x2 - x), in2, (x - x1))
|
||||
o2 = algorithm(in3, (x2 - x), in4, (x - x1))
|
||||
out_value = algorithm(o1, (y2 - y), o2, (y - y1))
|
||||
|
||||
out1[:,:,y_dest,x_dest] = out_value
|
||||
return out1
|
||||
|
||||
def common_upscale(samples, width, height, upscale_method, crop):
|
||||
if crop == "center":
|
||||
old_width = samples.shape[3]
|
||||
|
@ -61,6 +120,10 @@ def common_upscale(samples, width, height, upscale_method, crop):
|
|||
s = samples[:,:,y:old_height-y,x:old_width-x]
|
||||
else:
|
||||
s = samples
|
||||
|
||||
if upscale_method == "bislerp":
|
||||
return bislerp(s, width, height)
|
||||
else:
|
||||
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
|
||||
|
||||
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
|
||||
|
|
Loading…
Reference in New Issue