ComfyUI/comfy/utils.py

183 lines
7.1 KiB
Python

import torch
import math
def load_torch_file(ckpt, safe_load=False):
if ckpt.lower().endswith(".safetensors"):
import safetensors.torch
sd = safetensors.torch.load_file(ckpt, device="cpu")
else:
if safe_load:
pl_sd = torch.load(ckpt, map_location="cpu", weights_only=True)
else:
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
if "state_dict" in pl_sd:
sd = pl_sd["state_dict"]
else:
sd = pl_sd
return sd
def transformers_convert(sd, prefix_from, prefix_to, number):
resblock_to_replace = {
"ln_1": "layer_norm1",
"ln_2": "layer_norm2",
"mlp.c_fc": "mlp.fc1",
"mlp.c_proj": "mlp.fc2",
"attn.out_proj": "self_attn.out_proj",
}
for resblock in range(number):
for x in resblock_to_replace:
for y in ["weight", "bias"]:
k = "{}.transformer.resblocks.{}.{}.{}".format(prefix_from, resblock, x, y)
k_to = "{}.encoder.layers.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y)
if k in sd:
sd[k_to] = sd.pop(k)
for y in ["weight", "bias"]:
k_from = "{}.transformer.resblocks.{}.attn.in_proj_{}".format(prefix_from, resblock, y)
if k_from in sd:
weights = sd.pop(k_from)
shape_from = weights.shape[0] // 3
for x in range(3):
p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"]
k_to = "{}.encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y)
sd[k_to] = weights[shape_from*x:shape_from*(x + 1)]
return sd
#slow and inefficient, should be optimized
def bislerp(samples, width, height):
shape = list(samples.shape)
width_scale = (shape[3]) / (width )
height_scale = (shape[2]) / (height )
shape[3] = width
shape[2] = height
out1 = torch.empty(shape, dtype=samples.dtype, layout=samples.layout, device=samples.device)
def algorithm(in1, w1, in2, w2):
dims = in1.shape
val = w2
#flatten to batches
low = in1.reshape(dims[0], -1)
high = in2.reshape(dims[0], -1)
low_norm = low/torch.norm(low, dim=1, keepdim=True)
high_norm = high/torch.norm(high, dim=1, keepdim=True)
# in case we divide by zero
low_norm[low_norm != low_norm] = 0.0
high_norm[high_norm != high_norm] = 0.0
omega = torch.acos((low_norm*high_norm).sum(1))
so = torch.sin(omega)
res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
return res.reshape(dims)
for x_dest in range(shape[3]):
for y_dest in range(shape[2]):
y = (y_dest) * height_scale
x = (x_dest) * width_scale
x1 = max(math.floor(x), 0)
x2 = min(x1 + 1, samples.shape[3] - 1)
y1 = max(math.floor(y), 0)
y2 = min(y1 + 1, samples.shape[2] - 1)
in1 = samples[:,:,y1,x1]
in2 = samples[:,:,y1,x2]
in3 = samples[:,:,y2,x1]
in4 = samples[:,:,y2,x2]
if (x1 == x2) and (y1 == y2):
out_value = in1
elif (x1 == x2):
out_value = algorithm(in1, (y2 - y), in3, (y - y1))
elif (y1 == y2):
out_value = algorithm(in1, (x2 - x), in2, (x - x1))
else:
o1 = algorithm(in1, (x2 - x), in2, (x - x1))
o2 = algorithm(in3, (x2 - x), in4, (x - x1))
out_value = algorithm(o1, (y2 - y), o2, (y - y1))
out1[:,:,y_dest,x_dest] = out_value
return out1
def common_upscale(samples, width, height, upscale_method, crop):
if crop == "center":
old_width = samples.shape[3]
old_height = samples.shape[2]
old_aspect = old_width / old_height
new_aspect = width / height
x = 0
y = 0
if old_aspect > new_aspect:
x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
elif old_aspect < new_aspect:
y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
s = samples[:,:,y:old_height-y,x:old_width-x]
else:
s = samples
if upscale_method == "bislerp":
return bislerp(s, width, height)
else:
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap)))
@torch.inference_mode()
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, pbar = None):
output = torch.empty((samples.shape[0], out_channels, round(samples.shape[2] * upscale_amount), round(samples.shape[3] * upscale_amount)), device="cpu")
for b in range(samples.shape[0]):
s = samples[b:b+1]
out = torch.zeros((s.shape[0], out_channels, round(s.shape[2] * upscale_amount), round(s.shape[3] * upscale_amount)), device="cpu")
out_div = torch.zeros((s.shape[0], out_channels, round(s.shape[2] * upscale_amount), round(s.shape[3] * upscale_amount)), device="cpu")
for y in range(0, s.shape[2], tile_y - overlap):
for x in range(0, s.shape[3], tile_x - overlap):
s_in = s[:,:,y:y+tile_y,x:x+tile_x]
ps = function(s_in).cpu()
mask = torch.ones_like(ps)
feather = round(overlap * upscale_amount)
for t in range(feather):
mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))
mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
out[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += ps * mask
out_div[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += mask
if pbar is not None:
pbar.update(1)
output[b:b+1] = out/out_div
return output
PROGRESS_BAR_HOOK = None
def set_progress_bar_global_hook(function):
global PROGRESS_BAR_HOOK
PROGRESS_BAR_HOOK = function
class ProgressBar:
def __init__(self, total):
global PROGRESS_BAR_HOOK
self.total = total
self.current = 0
self.hook = PROGRESS_BAR_HOOK
def update_absolute(self, value, total=None):
if total is not None:
self.total = total
if value > self.total:
value = self.total
self.current = value
if self.hook is not None:
self.hook(self.current, self.total)
def update(self, value):
self.update_absolute(self.current + value)