46 lines
1.6 KiB
Python
46 lines
1.6 KiB
Python
|
#from: https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
|
||
|
def loglinear_interp(t_steps, num_steps):
|
||
|
"""
|
||
|
Performs log-linear interpolation of a given array of decreasing numbers.
|
||
|
"""
|
||
|
xs = np.linspace(0, 1, len(t_steps))
|
||
|
ys = np.log(t_steps[::-1])
|
||
|
|
||
|
new_xs = np.linspace(0, 1, num_steps)
|
||
|
new_ys = np.interp(new_xs, xs, ys)
|
||
|
|
||
|
interped_ys = np.exp(new_ys)[::-1].copy()
|
||
|
return interped_ys
|
||
|
|
||
|
NOISE_LEVELS = {"SD1": [14.6146412293, 6.4745760956, 3.8636745985, 2.6946151520, 1.8841921177, 1.3943805092, 0.9642583904, 0.6523686016, 0.3977456272, 0.1515232662, 0.0291671582],
|
||
|
"SDXL":[14.6146412293, 6.3184485287, 3.7681790315, 2.1811480769, 1.3405244945, 0.8620721141, 0.5550693289, 0.3798540708, 0.2332364134, 0.1114188177, 0.0291671582],
|
||
|
"SVD": [700.00, 54.5, 15.886, 7.977, 4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.002]}
|
||
|
|
||
|
class AlignYourStepsScheduler:
|
||
|
@classmethod
|
||
|
def INPUT_TYPES(s):
|
||
|
return {"required":
|
||
|
{"model_type": (["SD1", "SDXL", "SVD"], ),
|
||
|
"steps": ("INT", {"default": 10, "min": 10, "max": 10000}),
|
||
|
}
|
||
|
}
|
||
|
RETURN_TYPES = ("SIGMAS",)
|
||
|
CATEGORY = "sampling/custom_sampling/schedulers"
|
||
|
|
||
|
FUNCTION = "get_sigmas"
|
||
|
|
||
|
def get_sigmas(self, model_type, steps):
|
||
|
sigmas = NOISE_LEVELS[model_type][:]
|
||
|
if (steps + 1) != len(sigmas):
|
||
|
sigmas = loglinear_interp(sigmas, steps + 1)
|
||
|
|
||
|
sigmas[-1] = 0
|
||
|
return (torch.FloatTensor(sigmas), )
|
||
|
|
||
|
NODE_CLASS_MAPPINGS = {
|
||
|
"AlignYourStepsScheduler": AlignYourStepsScheduler,
|
||
|
}
|