#from: https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html import numpy as np import torch def loglinear_interp(t_steps, num_steps): """ Performs log-linear interpolation of a given array of decreasing numbers. """ xs = np.linspace(0, 1, len(t_steps)) ys = np.log(t_steps[::-1]) new_xs = np.linspace(0, 1, num_steps) new_ys = np.interp(new_xs, xs, ys) interped_ys = np.exp(new_ys)[::-1].copy() return interped_ys NOISE_LEVELS = {"SD1": [14.6146412293, 6.4745760956, 3.8636745985, 2.6946151520, 1.8841921177, 1.3943805092, 0.9642583904, 0.6523686016, 0.3977456272, 0.1515232662, 0.0291671582], "SDXL":[14.6146412293, 6.3184485287, 3.7681790315, 2.1811480769, 1.3405244945, 0.8620721141, 0.5550693289, 0.3798540708, 0.2332364134, 0.1114188177, 0.0291671582], "SVD": [700.00, 54.5, 15.886, 7.977, 4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.002]} class AlignYourStepsScheduler: @classmethod def INPUT_TYPES(s): return {"required": {"model_type": (["SD1", "SDXL", "SVD"], ), "steps": ("INT", {"default": 10, "min": 10, "max": 10000}), } } RETURN_TYPES = ("SIGMAS",) CATEGORY = "sampling/custom_sampling/schedulers" FUNCTION = "get_sigmas" def get_sigmas(self, model_type, steps): sigmas = NOISE_LEVELS[model_type][:] if (steps + 1) != len(sigmas): sigmas = loglinear_interp(sigmas, steps + 1) sigmas[-1] = 0 return (torch.FloatTensor(sigmas), ) NODE_CLASS_MAPPINGS = { "AlignYourStepsScheduler": AlignYourStepsScheduler, }