ComfyUI/execution.py

466 lines
17 KiB
Python
Raw Normal View History

import os
import sys
import copy
import json
import threading
import heapq
import traceback
import gc
2023-05-14 05:34:25 +00:00
import time
import torch
import nodes
import comfy.model_management
def get_input_data(inputs, class_def, unique_id, outputs={}, prompt={}, extra_data={}):
valid_inputs = class_def.INPUT_TYPES()
input_data_all = {}
for x in inputs:
input_data = inputs[x]
if isinstance(input_data, list):
input_unique_id = input_data[0]
output_index = input_data[1]
if input_unique_id not in outputs:
return None
obj = outputs[input_unique_id][output_index]
input_data_all[x] = obj
else:
if ("required" in valid_inputs and x in valid_inputs["required"]) or ("optional" in valid_inputs and x in valid_inputs["optional"]):
input_data_all[x] = [input_data]
if "hidden" in valid_inputs:
h = valid_inputs["hidden"]
for x in h:
if h[x] == "PROMPT":
input_data_all[x] = [prompt]
if h[x] == "EXTRA_PNGINFO":
if "extra_pnginfo" in extra_data:
input_data_all[x] = [extra_data['extra_pnginfo']]
if h[x] == "UNIQUE_ID":
input_data_all[x] = [unique_id]
return input_data_all
def map_node_over_list(obj, input_data_all, func, allow_interrupt=False):
# check if node wants the lists
intput_is_list = False
if hasattr(obj, "INPUT_IS_LIST"):
intput_is_list = obj.INPUT_IS_LIST
max_len_input = max([len(x) for x in input_data_all.values()])
# get a slice of inputs, repeat last input when list isn't long enough
def slice_dict(d, i):
d_new = dict()
for k,v in d.items():
d_new[k] = v[i if len(v) > i else -1]
return d_new
results = []
if intput_is_list:
if allow_interrupt:
nodes.before_node_execution()
results.append(getattr(obj, func)(**input_data_all))
else:
for i in range(max_len_input):
if allow_interrupt:
nodes.before_node_execution()
results.append(getattr(obj, func)(**slice_dict(input_data_all, i)))
return results
def get_output_data(obj, input_data_all):
results = []
uis = []
return_values = map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True)
for r in return_values:
if isinstance(r, dict):
if 'ui' in r:
uis.append(r['ui'])
if 'result' in r:
results.append(r['result'])
else:
results.append(r)
output = []
if len(results) > 0:
# check which outputs need concatenating
output_is_list = [False] * len(results[0])
if hasattr(obj, "OUTPUT_IS_LIST"):
output_is_list = obj.OUTPUT_IS_LIST
# merge node execution results
for i, is_list in zip(range(len(results[0])), output_is_list):
if is_list:
output.append([x for o in results for x in o[i]])
else:
output.append([o[i] for o in results])
ui = dict()
if len(uis) > 0:
ui = {k: [y for x in uis for y in x[k]] for k in uis[0].keys()}
return output, ui
2023-05-15 04:27:28 +00:00
def recursive_execute(server, prompt, outputs, current_item, extra_data, executed, prompt_id, outputs_ui):
unique_id = current_item
inputs = prompt[unique_id]['inputs']
class_type = prompt[unique_id]['class_type']
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
if unique_id in outputs:
return
for x in inputs:
input_data = inputs[x]
if isinstance(input_data, list):
input_unique_id = input_data[0]
output_index = input_data[1]
if input_unique_id not in outputs:
2023-05-15 04:27:28 +00:00
recursive_execute(server, prompt, outputs, input_unique_id, extra_data, executed, prompt_id, outputs_ui)
input_data_all = get_input_data(inputs, class_def, unique_id, outputs, prompt, extra_data)
if server.client_id is not None:
server.last_node_id = unique_id
server.send_sync("executing", { "node": unique_id, "prompt_id": prompt_id }, server.client_id)
obj = class_def()
output_data, output_ui = get_output_data(obj, input_data_all)
outputs[unique_id] = output_data
if len(output_ui) > 0:
2023-05-15 04:27:28 +00:00
outputs_ui[unique_id] = output_ui
if server.client_id is not None:
server.send_sync("executed", { "node": unique_id, "output": output_ui, "prompt_id": prompt_id }, server.client_id)
executed.add(unique_id)
def recursive_will_execute(prompt, outputs, current_item):
unique_id = current_item
inputs = prompt[unique_id]['inputs']
will_execute = []
if unique_id in outputs:
return []
for x in inputs:
input_data = inputs[x]
if isinstance(input_data, list):
input_unique_id = input_data[0]
output_index = input_data[1]
if input_unique_id not in outputs:
will_execute += recursive_will_execute(prompt, outputs, input_unique_id)
return will_execute + [unique_id]
def recursive_output_delete_if_changed(prompt, old_prompt, outputs, current_item):
unique_id = current_item
inputs = prompt[unique_id]['inputs']
class_type = prompt[unique_id]['class_type']
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
is_changed_old = ''
is_changed = ''
to_delete = False
if hasattr(class_def, 'IS_CHANGED'):
if unique_id in old_prompt and 'is_changed' in old_prompt[unique_id]:
is_changed_old = old_prompt[unique_id]['is_changed']
if 'is_changed' not in prompt[unique_id]:
input_data_all = get_input_data(inputs, class_def, unique_id, outputs)
if input_data_all is not None:
try:
#is_changed = class_def.IS_CHANGED(**input_data_all)
is_changed = map_node_over_list(class_def, input_data_all, "IS_CHANGED")
prompt[unique_id]['is_changed'] = is_changed
except:
to_delete = True
else:
is_changed = prompt[unique_id]['is_changed']
if unique_id not in outputs:
return True
if not to_delete:
if is_changed != is_changed_old:
to_delete = True
elif unique_id not in old_prompt:
to_delete = True
elif inputs == old_prompt[unique_id]['inputs']:
for x in inputs:
input_data = inputs[x]
if isinstance(input_data, list):
input_unique_id = input_data[0]
output_index = input_data[1]
if input_unique_id in outputs:
to_delete = recursive_output_delete_if_changed(prompt, old_prompt, outputs, input_unique_id)
else:
to_delete = True
if to_delete:
break
else:
to_delete = True
if to_delete:
d = outputs.pop(unique_id)
del d
return to_delete
class PromptExecutor:
def __init__(self, server):
self.outputs = {}
2023-05-15 04:27:28 +00:00
self.outputs_ui = {}
self.old_prompt = {}
self.server = server
def execute(self, prompt, prompt_id, extra_data={}, execute_outputs=[]):
nodes.interrupt_processing(False)
if "client_id" in extra_data:
self.server.client_id = extra_data["client_id"]
else:
self.server.client_id = None
2023-05-14 05:34:25 +00:00
execution_start_time = time.perf_counter()
if self.server.client_id is not None:
self.server.send_sync("execution_start", { "prompt_id": prompt_id}, self.server.client_id)
2023-03-22 07:48:26 +00:00
with torch.inference_mode():
#delete cached outputs if nodes don't exist for them
to_delete = []
for o in self.outputs:
if o not in prompt:
to_delete += [o]
for o in to_delete:
d = self.outputs.pop(o)
del d
for x in prompt:
recursive_output_delete_if_changed(prompt, self.old_prompt, self.outputs, x)
current_outputs = set(self.outputs.keys())
2023-05-15 04:27:28 +00:00
for x in list(self.outputs_ui.keys()):
if x not in current_outputs:
d = self.outputs_ui.pop(x)
del d
if self.server.client_id is not None:
self.server.send_sync("execution_cached", { "nodes": list(current_outputs) , "prompt_id": prompt_id}, self.server.client_id)
executed = set()
try:
to_execute = []
2023-05-10 04:29:31 +00:00
for x in list(execute_outputs):
to_execute += [(0, x)]
while len(to_execute) > 0:
#always execute the output that depends on the least amount of unexecuted nodes first
to_execute = sorted(list(map(lambda a: (len(recursive_will_execute(prompt, self.outputs, a[-1])), a[-1]), to_execute)))
x = to_execute.pop(0)[-1]
2023-05-15 04:27:28 +00:00
recursive_execute(self.server, prompt, self.outputs, x, extra_data, executed, prompt_id, self.outputs_ui)
except Exception as e:
if isinstance(e, comfy.model_management.InterruptProcessingException):
print("Processing interrupted")
else:
message = str(traceback.format_exc())
print(message)
if self.server.client_id is not None:
self.server.send_sync("execution_error", { "message": message, "prompt_id": prompt_id }, self.server.client_id)
to_delete = []
for o in self.outputs:
if (o not in current_outputs) and (o not in executed):
to_delete += [o]
if o in self.old_prompt:
d = self.old_prompt.pop(o)
del d
for o in to_delete:
d = self.outputs.pop(o)
del d
finally:
for x in executed:
self.old_prompt[x] = copy.deepcopy(prompt[x])
self.server.last_node_id = None
if self.server.client_id is not None:
self.server.send_sync("executing", { "node": None, "prompt_id": prompt_id }, self.server.client_id)
2023-05-14 05:34:25 +00:00
print("Prompt executed in {:.2f} seconds".format(time.perf_counter() - execution_start_time))
gc.collect()
comfy.model_management.soft_empty_cache()
2023-05-10 04:29:31 +00:00
def validate_inputs(prompt, item, validated):
unique_id = item
2023-05-10 04:29:31 +00:00
if unique_id in validated:
return validated[unique_id]
inputs = prompt[unique_id]['inputs']
class_type = prompt[unique_id]['class_type']
obj_class = nodes.NODE_CLASS_MAPPINGS[class_type]
class_inputs = obj_class.INPUT_TYPES()
required_inputs = class_inputs['required']
for x in required_inputs:
if x not in inputs:
return (False, "Required input is missing. {}, {}".format(class_type, x))
val = inputs[x]
info = required_inputs[x]
type_input = info[0]
if isinstance(val, list):
if len(val) != 2:
return (False, "Bad Input. {}, {}".format(class_type, x))
o_id = val[0]
o_class_type = prompt[o_id]['class_type']
r = nodes.NODE_CLASS_MAPPINGS[o_class_type].RETURN_TYPES
if r[val[1]] != type_input:
return (False, "Return type mismatch. {}, {}, {} != {}".format(class_type, x, r[val[1]], type_input))
2023-05-10 04:29:31 +00:00
r = validate_inputs(prompt, o_id, validated)
if r[0] == False:
2023-05-10 04:29:31 +00:00
validated[o_id] = r
return r
else:
if type_input == "INT":
val = int(val)
inputs[x] = val
if type_input == "FLOAT":
val = float(val)
inputs[x] = val
if type_input == "STRING":
val = str(val)
inputs[x] = val
if len(info) > 1:
if "min" in info[1] and val < info[1]["min"]:
return (False, "Value {} smaller than min of {}. {}, {}".format(val, info[1]["min"], class_type, x))
if "max" in info[1] and val > info[1]["max"]:
return (False, "Value {} bigger than max of {}. {}, {}".format(val, info[1]["max"], class_type, x))
if hasattr(obj_class, "VALIDATE_INPUTS"):
input_data_all = get_input_data(inputs, obj_class, unique_id)
#ret = obj_class.VALIDATE_INPUTS(**input_data_all)
ret = map_node_over_list(obj_class, input_data_all, "VALIDATE_INPUTS")
for r in ret:
if r != True:
return (False, "{}, {}".format(class_type, r))
else:
if isinstance(type_input, list):
if val not in type_input:
return (False, "Value not in list. {}, {}: {} not in {}".format(class_type, x, val, type_input))
2023-05-10 04:29:31 +00:00
ret = (True, "")
validated[unique_id] = ret
return ret
def validate_prompt(prompt):
outputs = set()
for x in prompt:
class_ = nodes.NODE_CLASS_MAPPINGS[prompt[x]['class_type']]
if hasattr(class_, 'OUTPUT_NODE') and class_.OUTPUT_NODE == True:
outputs.add(x)
if len(outputs) == 0:
return (False, "Prompt has no outputs")
good_outputs = set()
errors = []
2023-05-10 04:29:31 +00:00
validated = {}
for o in outputs:
valid = False
reason = ""
try:
2023-05-10 04:29:31 +00:00
m = validate_inputs(prompt, o, validated)
valid = m[0]
reason = m[1]
except Exception as e:
print(traceback.format_exc())
valid = False
reason = "Parsing error"
if valid == True:
2023-05-10 04:29:31 +00:00
good_outputs.add(o)
else:
print("Failed to validate prompt for output {} {}".format(o, reason))
print("output will be ignored")
errors += [(o, reason)]
if len(good_outputs) == 0:
2023-03-27 06:16:58 +00:00
errors_list = "\n".join(set(map(lambda a: "{}".format(a[1]), errors)))
return (False, "Prompt has no properly connected outputs\n {}".format(errors_list))
2023-05-10 04:29:31 +00:00
return (True, "", list(good_outputs))
class PromptQueue:
def __init__(self, server):
self.server = server
self.mutex = threading.RLock()
self.not_empty = threading.Condition(self.mutex)
self.task_counter = 0
self.queue = []
self.currently_running = {}
self.history = {}
server.prompt_queue = self
def put(self, item):
with self.mutex:
heapq.heappush(self.queue, item)
self.server.queue_updated()
self.not_empty.notify()
def get(self):
with self.not_empty:
while len(self.queue) == 0:
self.not_empty.wait()
item = heapq.heappop(self.queue)
i = self.task_counter
self.currently_running[i] = copy.deepcopy(item)
self.task_counter += 1
self.server.queue_updated()
return (item, i)
def task_done(self, item_id, outputs):
with self.mutex:
prompt = self.currently_running.pop(item_id)
self.history[prompt[1]] = { "prompt": prompt, "outputs": {} }
for o in outputs:
2023-05-15 04:27:28 +00:00
self.history[prompt[1]]["outputs"][o] = outputs[o]
self.server.queue_updated()
def get_current_queue(self):
with self.mutex:
out = []
for x in self.currently_running.values():
out += [x]
return (out, copy.deepcopy(self.queue))
def get_tasks_remaining(self):
with self.mutex:
return len(self.queue) + len(self.currently_running)
def wipe_queue(self):
with self.mutex:
self.queue = []
self.server.queue_updated()
def delete_queue_item(self, function):
with self.mutex:
for x in range(len(self.queue)):
if function(self.queue[x]):
if len(self.queue) == 1:
self.wipe_queue()
else:
self.queue.pop(x)
heapq.heapify(self.queue)
self.server.queue_updated()
return True
return False
def get_history(self):
with self.mutex:
return copy.deepcopy(self.history)
def wipe_history(self):
with self.mutex:
self.history = {}
def delete_history_item(self, id_to_delete):
with self.mutex:
self.history.pop(id_to_delete, None)