2023-02-28 00:43:55 +00:00
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
import copy
|
|
|
|
import json
|
|
|
|
import threading
|
|
|
|
import heapq
|
|
|
|
import traceback
|
2023-02-28 16:56:33 +00:00
|
|
|
import gc
|
2023-05-14 05:34:25 +00:00
|
|
|
import time
|
2023-02-28 00:43:55 +00:00
|
|
|
|
|
|
|
import torch
|
|
|
|
import nodes
|
|
|
|
|
2023-04-15 15:19:07 +00:00
|
|
|
import comfy.model_management
|
2023-04-15 07:50:51 +00:00
|
|
|
|
2023-03-28 06:52:12 +00:00
|
|
|
def get_input_data(inputs, class_def, unique_id, outputs={}, prompt={}, extra_data={}):
|
2023-02-28 00:43:55 +00:00
|
|
|
valid_inputs = class_def.INPUT_TYPES()
|
|
|
|
input_data_all = {}
|
|
|
|
for x in inputs:
|
|
|
|
input_data = inputs[x]
|
|
|
|
if isinstance(input_data, list):
|
|
|
|
input_unique_id = input_data[0]
|
|
|
|
output_index = input_data[1]
|
2023-03-27 05:56:22 +00:00
|
|
|
if input_unique_id not in outputs:
|
|
|
|
return None
|
2023-02-28 00:43:55 +00:00
|
|
|
obj = outputs[input_unique_id][output_index]
|
|
|
|
input_data_all[x] = obj
|
|
|
|
else:
|
|
|
|
if ("required" in valid_inputs and x in valid_inputs["required"]) or ("optional" in valid_inputs and x in valid_inputs["optional"]):
|
2023-05-13 15:15:45 +00:00
|
|
|
input_data_all[x] = [input_data]
|
2023-02-28 00:43:55 +00:00
|
|
|
|
|
|
|
if "hidden" in valid_inputs:
|
|
|
|
h = valid_inputs["hidden"]
|
|
|
|
for x in h:
|
|
|
|
if h[x] == "PROMPT":
|
2023-05-13 15:15:45 +00:00
|
|
|
input_data_all[x] = [prompt]
|
2023-02-28 00:43:55 +00:00
|
|
|
if h[x] == "EXTRA_PNGINFO":
|
|
|
|
if "extra_pnginfo" in extra_data:
|
2023-05-13 15:15:45 +00:00
|
|
|
input_data_all[x] = [extra_data['extra_pnginfo']]
|
2023-03-28 06:52:12 +00:00
|
|
|
if h[x] == "UNIQUE_ID":
|
2023-05-13 15:15:45 +00:00
|
|
|
input_data_all[x] = [unique_id]
|
2023-02-28 00:43:55 +00:00
|
|
|
return input_data_all
|
|
|
|
|
2023-05-13 15:15:45 +00:00
|
|
|
def map_node_over_list(obj, input_data_all, func, allow_interrupt=False):
|
|
|
|
# check if node wants the lists
|
|
|
|
intput_is_list = False
|
|
|
|
if hasattr(obj, "INPUT_IS_LIST"):
|
|
|
|
intput_is_list = obj.INPUT_IS_LIST
|
|
|
|
|
|
|
|
max_len_input = max([len(x) for x in input_data_all.values()])
|
|
|
|
|
|
|
|
# get a slice of inputs, repeat last input when list isn't long enough
|
|
|
|
def slice_dict(d, i):
|
|
|
|
d_new = dict()
|
|
|
|
for k,v in d.items():
|
|
|
|
d_new[k] = v[i if len(v) > i else -1]
|
|
|
|
return d_new
|
|
|
|
|
|
|
|
results = []
|
|
|
|
if intput_is_list:
|
|
|
|
if allow_interrupt:
|
|
|
|
nodes.before_node_execution()
|
|
|
|
results.append(getattr(obj, func)(**input_data_all))
|
|
|
|
else:
|
|
|
|
for i in range(max_len_input):
|
|
|
|
if allow_interrupt:
|
|
|
|
nodes.before_node_execution()
|
|
|
|
results.append(getattr(obj, func)(**slice_dict(input_data_all, i)))
|
|
|
|
return results
|
|
|
|
|
|
|
|
def get_output_data(obj, input_data_all):
|
|
|
|
|
|
|
|
results = []
|
|
|
|
uis = []
|
|
|
|
return_values = map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True)
|
|
|
|
|
|
|
|
for r in return_values:
|
|
|
|
if isinstance(r, dict):
|
|
|
|
if 'ui' in r:
|
|
|
|
uis.append(r['ui'])
|
|
|
|
if 'result' in r:
|
|
|
|
results.append(r['result'])
|
|
|
|
else:
|
|
|
|
results.append(r)
|
|
|
|
|
|
|
|
output = []
|
|
|
|
if len(results) > 0:
|
|
|
|
# check which outputs need concatenating
|
|
|
|
output_is_list = [False] * len(results[0])
|
|
|
|
if hasattr(obj, "OUTPUT_IS_LIST"):
|
|
|
|
output_is_list = obj.OUTPUT_IS_LIST
|
|
|
|
|
|
|
|
# merge node execution results
|
|
|
|
for i, is_list in zip(range(len(results[0])), output_is_list):
|
|
|
|
if is_list:
|
|
|
|
output.append([x for o in results for x in o[i]])
|
|
|
|
else:
|
|
|
|
output.append([o[i] for o in results])
|
|
|
|
|
|
|
|
ui = dict()
|
|
|
|
if len(uis) > 0:
|
|
|
|
ui = {k: [y for x in uis for y in x[k]] for k in uis[0].keys()}
|
|
|
|
return output, ui
|
|
|
|
|
2023-05-13 15:17:16 +00:00
|
|
|
def recursive_execute(server, prompt, outputs, current_item, extra_data, executed, prompt_id):
|
2023-02-28 00:43:55 +00:00
|
|
|
unique_id = current_item
|
|
|
|
inputs = prompt[unique_id]['inputs']
|
|
|
|
class_type = prompt[unique_id]['class_type']
|
|
|
|
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
|
|
|
|
if unique_id in outputs:
|
2023-04-24 02:44:38 +00:00
|
|
|
return
|
2023-02-28 00:43:55 +00:00
|
|
|
|
|
|
|
for x in inputs:
|
|
|
|
input_data = inputs[x]
|
|
|
|
|
|
|
|
if isinstance(input_data, list):
|
|
|
|
input_unique_id = input_data[0]
|
|
|
|
output_index = input_data[1]
|
|
|
|
if input_unique_id not in outputs:
|
2023-05-13 15:17:16 +00:00
|
|
|
recursive_execute(server, prompt, outputs, input_unique_id, extra_data, executed, prompt_id)
|
2023-02-28 00:43:55 +00:00
|
|
|
|
2023-03-28 06:52:12 +00:00
|
|
|
input_data_all = get_input_data(inputs, class_def, unique_id, outputs, prompt, extra_data)
|
2023-02-28 00:43:55 +00:00
|
|
|
if server.client_id is not None:
|
2023-03-07 13:24:15 +00:00
|
|
|
server.last_node_id = unique_id
|
2023-05-13 15:17:16 +00:00
|
|
|
server.send_sync("executing", { "node": unique_id, "prompt_id": prompt_id }, server.client_id)
|
2023-02-28 00:43:55 +00:00
|
|
|
obj = class_def()
|
|
|
|
|
2023-05-13 15:15:45 +00:00
|
|
|
output_data, output_ui = get_output_data(obj, input_data_all)
|
|
|
|
outputs[unique_id] = output_data
|
|
|
|
if len(output_ui) > 0:
|
2023-03-29 17:53:24 +00:00
|
|
|
if server.client_id is not None:
|
2023-05-13 15:17:16 +00:00
|
|
|
server.send_sync("executed", { "node": unique_id, "output": output_ui, "prompt_id": prompt_id }, server.client_id)
|
2023-04-24 02:44:38 +00:00
|
|
|
executed.add(unique_id)
|
2023-02-28 00:43:55 +00:00
|
|
|
|
|
|
|
def recursive_will_execute(prompt, outputs, current_item):
|
|
|
|
unique_id = current_item
|
|
|
|
inputs = prompt[unique_id]['inputs']
|
|
|
|
will_execute = []
|
|
|
|
if unique_id in outputs:
|
|
|
|
return []
|
|
|
|
|
|
|
|
for x in inputs:
|
|
|
|
input_data = inputs[x]
|
|
|
|
if isinstance(input_data, list):
|
|
|
|
input_unique_id = input_data[0]
|
|
|
|
output_index = input_data[1]
|
|
|
|
if input_unique_id not in outputs:
|
|
|
|
will_execute += recursive_will_execute(prompt, outputs, input_unique_id)
|
|
|
|
|
|
|
|
return will_execute + [unique_id]
|
|
|
|
|
|
|
|
def recursive_output_delete_if_changed(prompt, old_prompt, outputs, current_item):
|
|
|
|
unique_id = current_item
|
|
|
|
inputs = prompt[unique_id]['inputs']
|
|
|
|
class_type = prompt[unique_id]['class_type']
|
|
|
|
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
|
|
|
|
|
|
|
|
is_changed_old = ''
|
|
|
|
is_changed = ''
|
2023-04-26 06:13:56 +00:00
|
|
|
to_delete = False
|
2023-02-28 00:43:55 +00:00
|
|
|
if hasattr(class_def, 'IS_CHANGED'):
|
|
|
|
if unique_id in old_prompt and 'is_changed' in old_prompt[unique_id]:
|
|
|
|
is_changed_old = old_prompt[unique_id]['is_changed']
|
|
|
|
if 'is_changed' not in prompt[unique_id]:
|
2023-03-28 06:52:12 +00:00
|
|
|
input_data_all = get_input_data(inputs, class_def, unique_id, outputs)
|
2023-03-27 05:56:22 +00:00
|
|
|
if input_data_all is not None:
|
2023-04-26 06:13:56 +00:00
|
|
|
try:
|
2023-05-13 15:15:45 +00:00
|
|
|
#is_changed = class_def.IS_CHANGED(**input_data_all)
|
|
|
|
is_changed = map_node_over_list(class_def, input_data_all, "IS_CHANGED")
|
2023-04-26 06:13:56 +00:00
|
|
|
prompt[unique_id]['is_changed'] = is_changed
|
|
|
|
except:
|
|
|
|
to_delete = True
|
2023-02-28 00:43:55 +00:00
|
|
|
else:
|
|
|
|
is_changed = prompt[unique_id]['is_changed']
|
|
|
|
|
|
|
|
if unique_id not in outputs:
|
|
|
|
return True
|
|
|
|
|
2023-04-26 06:13:56 +00:00
|
|
|
if not to_delete:
|
|
|
|
if is_changed != is_changed_old:
|
|
|
|
to_delete = True
|
|
|
|
elif unique_id not in old_prompt:
|
|
|
|
to_delete = True
|
|
|
|
elif inputs == old_prompt[unique_id]['inputs']:
|
|
|
|
for x in inputs:
|
|
|
|
input_data = inputs[x]
|
|
|
|
|
|
|
|
if isinstance(input_data, list):
|
|
|
|
input_unique_id = input_data[0]
|
|
|
|
output_index = input_data[1]
|
|
|
|
if input_unique_id in outputs:
|
|
|
|
to_delete = recursive_output_delete_if_changed(prompt, old_prompt, outputs, input_unique_id)
|
|
|
|
else:
|
|
|
|
to_delete = True
|
|
|
|
if to_delete:
|
|
|
|
break
|
|
|
|
else:
|
|
|
|
to_delete = True
|
2023-02-28 00:43:55 +00:00
|
|
|
|
|
|
|
if to_delete:
|
|
|
|
d = outputs.pop(unique_id)
|
|
|
|
del d
|
|
|
|
return to_delete
|
|
|
|
|
|
|
|
class PromptExecutor:
|
|
|
|
def __init__(self, server):
|
|
|
|
self.outputs = {}
|
|
|
|
self.old_prompt = {}
|
|
|
|
self.server = server
|
|
|
|
|
2023-05-11 05:22:40 +00:00
|
|
|
def execute(self, prompt, prompt_id, extra_data={}, execute_outputs=[]):
|
2023-03-02 20:24:51 +00:00
|
|
|
nodes.interrupt_processing(False)
|
|
|
|
|
2023-02-28 00:43:55 +00:00
|
|
|
if "client_id" in extra_data:
|
|
|
|
self.server.client_id = extra_data["client_id"]
|
|
|
|
else:
|
|
|
|
self.server.client_id = None
|
|
|
|
|
2023-05-14 05:34:25 +00:00
|
|
|
execution_start_time = time.perf_counter()
|
2023-05-13 15:17:16 +00:00
|
|
|
if self.server.client_id is not None:
|
|
|
|
self.server.send_sync("execution_start", { "prompt_id": prompt_id}, self.server.client_id)
|
|
|
|
|
2023-03-22 07:48:26 +00:00
|
|
|
with torch.inference_mode():
|
2023-04-26 06:05:57 +00:00
|
|
|
#delete cached outputs if nodes don't exist for them
|
|
|
|
to_delete = []
|
|
|
|
for o in self.outputs:
|
|
|
|
if o not in prompt:
|
|
|
|
to_delete += [o]
|
|
|
|
for o in to_delete:
|
|
|
|
d = self.outputs.pop(o)
|
|
|
|
del d
|
|
|
|
|
2023-02-28 00:43:55 +00:00
|
|
|
for x in prompt:
|
|
|
|
recursive_output_delete_if_changed(prompt, self.old_prompt, self.outputs, x)
|
|
|
|
|
|
|
|
current_outputs = set(self.outputs.keys())
|
2023-05-10 19:59:24 +00:00
|
|
|
if self.server.client_id is not None:
|
2023-05-11 05:22:40 +00:00
|
|
|
self.server.send_sync("execution_cached", { "nodes": list(current_outputs) , "prompt_id": prompt_id}, self.server.client_id)
|
2023-04-24 02:44:38 +00:00
|
|
|
executed = set()
|
2023-02-28 00:43:55 +00:00
|
|
|
try:
|
|
|
|
to_execute = []
|
2023-05-10 04:29:31 +00:00
|
|
|
for x in list(execute_outputs):
|
|
|
|
to_execute += [(0, x)]
|
2023-02-28 00:43:55 +00:00
|
|
|
|
|
|
|
while len(to_execute) > 0:
|
|
|
|
#always execute the output that depends on the least amount of unexecuted nodes first
|
|
|
|
to_execute = sorted(list(map(lambda a: (len(recursive_will_execute(prompt, self.outputs, a[-1])), a[-1]), to_execute)))
|
|
|
|
x = to_execute.pop(0)[-1]
|
|
|
|
|
2023-05-13 15:17:16 +00:00
|
|
|
recursive_execute(self.server, prompt, self.outputs, x, extra_data, executed, prompt_id)
|
2023-02-28 00:43:55 +00:00
|
|
|
except Exception as e:
|
2023-05-10 03:51:52 +00:00
|
|
|
if isinstance(e, comfy.model_management.InterruptProcessingException):
|
|
|
|
print("Processing interrupted")
|
|
|
|
else:
|
2023-05-10 19:49:49 +00:00
|
|
|
message = str(traceback.format_exc())
|
|
|
|
print(message)
|
|
|
|
if self.server.client_id is not None:
|
2023-05-11 05:22:40 +00:00
|
|
|
self.server.send_sync("execution_error", { "message": message, "prompt_id": prompt_id }, self.server.client_id)
|
2023-05-10 19:49:49 +00:00
|
|
|
|
2023-02-28 00:43:55 +00:00
|
|
|
to_delete = []
|
|
|
|
for o in self.outputs:
|
2023-04-24 02:44:38 +00:00
|
|
|
if (o not in current_outputs) and (o not in executed):
|
2023-02-28 00:43:55 +00:00
|
|
|
to_delete += [o]
|
|
|
|
if o in self.old_prompt:
|
|
|
|
d = self.old_prompt.pop(o)
|
|
|
|
del d
|
|
|
|
for o in to_delete:
|
|
|
|
d = self.outputs.pop(o)
|
|
|
|
del d
|
2023-04-24 02:44:38 +00:00
|
|
|
finally:
|
2023-02-28 00:43:55 +00:00
|
|
|
for x in executed:
|
|
|
|
self.old_prompt[x] = copy.deepcopy(prompt[x])
|
2023-03-07 13:24:15 +00:00
|
|
|
self.server.last_node_id = None
|
2023-02-28 00:43:55 +00:00
|
|
|
if self.server.client_id is not None:
|
2023-05-11 05:22:40 +00:00
|
|
|
self.server.send_sync("executing", { "node": None, "prompt_id": prompt_id }, self.server.client_id)
|
2023-02-28 00:43:55 +00:00
|
|
|
|
2023-05-14 05:34:25 +00:00
|
|
|
print("Prompt executed in {:.2f} seconds".format(time.perf_counter() - execution_start_time))
|
2023-02-28 16:56:33 +00:00
|
|
|
gc.collect()
|
2023-04-15 15:19:07 +00:00
|
|
|
comfy.model_management.soft_empty_cache()
|
2023-02-28 16:56:33 +00:00
|
|
|
|
2023-02-28 00:43:55 +00:00
|
|
|
|
2023-05-10 04:29:31 +00:00
|
|
|
def validate_inputs(prompt, item, validated):
|
2023-02-28 00:43:55 +00:00
|
|
|
unique_id = item
|
2023-05-10 04:29:31 +00:00
|
|
|
if unique_id in validated:
|
|
|
|
return validated[unique_id]
|
|
|
|
|
2023-02-28 00:43:55 +00:00
|
|
|
inputs = prompt[unique_id]['inputs']
|
|
|
|
class_type = prompt[unique_id]['class_type']
|
|
|
|
obj_class = nodes.NODE_CLASS_MAPPINGS[class_type]
|
|
|
|
|
|
|
|
class_inputs = obj_class.INPUT_TYPES()
|
|
|
|
required_inputs = class_inputs['required']
|
|
|
|
for x in required_inputs:
|
|
|
|
if x not in inputs:
|
|
|
|
return (False, "Required input is missing. {}, {}".format(class_type, x))
|
|
|
|
val = inputs[x]
|
|
|
|
info = required_inputs[x]
|
|
|
|
type_input = info[0]
|
|
|
|
if isinstance(val, list):
|
|
|
|
if len(val) != 2:
|
|
|
|
return (False, "Bad Input. {}, {}".format(class_type, x))
|
|
|
|
o_id = val[0]
|
|
|
|
o_class_type = prompt[o_id]['class_type']
|
|
|
|
r = nodes.NODE_CLASS_MAPPINGS[o_class_type].RETURN_TYPES
|
|
|
|
if r[val[1]] != type_input:
|
|
|
|
return (False, "Return type mismatch. {}, {}, {} != {}".format(class_type, x, r[val[1]], type_input))
|
2023-05-10 04:29:31 +00:00
|
|
|
r = validate_inputs(prompt, o_id, validated)
|
2023-02-28 00:43:55 +00:00
|
|
|
if r[0] == False:
|
2023-05-10 04:29:31 +00:00
|
|
|
validated[o_id] = r
|
2023-02-28 00:43:55 +00:00
|
|
|
return r
|
|
|
|
else:
|
|
|
|
if type_input == "INT":
|
|
|
|
val = int(val)
|
|
|
|
inputs[x] = val
|
|
|
|
if type_input == "FLOAT":
|
|
|
|
val = float(val)
|
|
|
|
inputs[x] = val
|
|
|
|
if type_input == "STRING":
|
|
|
|
val = str(val)
|
|
|
|
inputs[x] = val
|
|
|
|
|
|
|
|
if len(info) > 1:
|
|
|
|
if "min" in info[1] and val < info[1]["min"]:
|
|
|
|
return (False, "Value smaller than min. {}, {}".format(class_type, x))
|
|
|
|
if "max" in info[1] and val > info[1]["max"]:
|
|
|
|
return (False, "Value bigger than max. {}, {}".format(class_type, x))
|
|
|
|
|
2023-04-23 20:03:26 +00:00
|
|
|
if hasattr(obj_class, "VALIDATE_INPUTS"):
|
|
|
|
input_data_all = get_input_data(inputs, obj_class, unique_id)
|
2023-05-13 15:15:45 +00:00
|
|
|
#ret = obj_class.VALIDATE_INPUTS(**input_data_all)
|
|
|
|
ret = map_node_over_list(obj_class, input_data_all, "VALIDATE_INPUTS")
|
|
|
|
for r in ret:
|
|
|
|
if r != True:
|
|
|
|
return (False, "{}, {}".format(class_type, r))
|
2023-04-23 20:03:26 +00:00
|
|
|
else:
|
|
|
|
if isinstance(type_input, list):
|
|
|
|
if val not in type_input:
|
|
|
|
return (False, "Value not in list. {}, {}: {} not in {}".format(class_type, x, val, type_input))
|
2023-05-10 04:29:31 +00:00
|
|
|
|
|
|
|
ret = (True, "")
|
|
|
|
validated[unique_id] = ret
|
|
|
|
return ret
|
2023-02-28 00:43:55 +00:00
|
|
|
|
|
|
|
def validate_prompt(prompt):
|
|
|
|
outputs = set()
|
|
|
|
for x in prompt:
|
|
|
|
class_ = nodes.NODE_CLASS_MAPPINGS[prompt[x]['class_type']]
|
|
|
|
if hasattr(class_, 'OUTPUT_NODE') and class_.OUTPUT_NODE == True:
|
|
|
|
outputs.add(x)
|
|
|
|
|
|
|
|
if len(outputs) == 0:
|
|
|
|
return (False, "Prompt has no outputs")
|
|
|
|
|
|
|
|
good_outputs = set()
|
|
|
|
errors = []
|
2023-05-10 04:29:31 +00:00
|
|
|
validated = {}
|
2023-02-28 00:43:55 +00:00
|
|
|
for o in outputs:
|
|
|
|
valid = False
|
|
|
|
reason = ""
|
|
|
|
try:
|
2023-05-10 04:29:31 +00:00
|
|
|
m = validate_inputs(prompt, o, validated)
|
2023-02-28 00:43:55 +00:00
|
|
|
valid = m[0]
|
|
|
|
reason = m[1]
|
2023-04-23 20:03:26 +00:00
|
|
|
except Exception as e:
|
|
|
|
print(traceback.format_exc())
|
2023-02-28 00:43:55 +00:00
|
|
|
valid = False
|
|
|
|
reason = "Parsing error"
|
|
|
|
|
|
|
|
if valid == True:
|
2023-05-10 04:29:31 +00:00
|
|
|
good_outputs.add(o)
|
2023-02-28 00:43:55 +00:00
|
|
|
else:
|
|
|
|
print("Failed to validate prompt for output {} {}".format(o, reason))
|
|
|
|
print("output will be ignored")
|
|
|
|
errors += [(o, reason)]
|
|
|
|
|
|
|
|
if len(good_outputs) == 0:
|
2023-03-27 06:16:58 +00:00
|
|
|
errors_list = "\n".join(set(map(lambda a: "{}".format(a[1]), errors)))
|
2023-02-28 00:43:55 +00:00
|
|
|
return (False, "Prompt has no properly connected outputs\n {}".format(errors_list))
|
|
|
|
|
2023-05-10 04:29:31 +00:00
|
|
|
return (True, "", list(good_outputs))
|
2023-02-28 00:43:55 +00:00
|
|
|
|
|
|
|
|
|
|
|
class PromptQueue:
|
|
|
|
def __init__(self, server):
|
|
|
|
self.server = server
|
|
|
|
self.mutex = threading.RLock()
|
|
|
|
self.not_empty = threading.Condition(self.mutex)
|
|
|
|
self.task_counter = 0
|
|
|
|
self.queue = []
|
|
|
|
self.currently_running = {}
|
|
|
|
self.history = {}
|
|
|
|
server.prompt_queue = self
|
|
|
|
|
|
|
|
def put(self, item):
|
|
|
|
with self.mutex:
|
|
|
|
heapq.heappush(self.queue, item)
|
|
|
|
self.server.queue_updated()
|
|
|
|
self.not_empty.notify()
|
|
|
|
|
|
|
|
def get(self):
|
|
|
|
with self.not_empty:
|
|
|
|
while len(self.queue) == 0:
|
|
|
|
self.not_empty.wait()
|
|
|
|
item = heapq.heappop(self.queue)
|
|
|
|
i = self.task_counter
|
|
|
|
self.currently_running[i] = copy.deepcopy(item)
|
|
|
|
self.task_counter += 1
|
|
|
|
self.server.queue_updated()
|
|
|
|
return (item, i)
|
|
|
|
|
|
|
|
def task_done(self, item_id, outputs):
|
|
|
|
with self.mutex:
|
|
|
|
prompt = self.currently_running.pop(item_id)
|
|
|
|
self.history[prompt[1]] = { "prompt": prompt, "outputs": {} }
|
|
|
|
for o in outputs:
|
|
|
|
if "ui" in outputs[o]:
|
|
|
|
self.history[prompt[1]]["outputs"][o] = outputs[o]["ui"]
|
|
|
|
self.server.queue_updated()
|
|
|
|
|
|
|
|
def get_current_queue(self):
|
|
|
|
with self.mutex:
|
|
|
|
out = []
|
|
|
|
for x in self.currently_running.values():
|
|
|
|
out += [x]
|
|
|
|
return (out, copy.deepcopy(self.queue))
|
|
|
|
|
|
|
|
def get_tasks_remaining(self):
|
|
|
|
with self.mutex:
|
|
|
|
return len(self.queue) + len(self.currently_running)
|
|
|
|
|
|
|
|
def wipe_queue(self):
|
|
|
|
with self.mutex:
|
|
|
|
self.queue = []
|
|
|
|
self.server.queue_updated()
|
|
|
|
|
|
|
|
def delete_queue_item(self, function):
|
|
|
|
with self.mutex:
|
|
|
|
for x in range(len(self.queue)):
|
|
|
|
if function(self.queue[x]):
|
|
|
|
if len(self.queue) == 1:
|
|
|
|
self.wipe_queue()
|
|
|
|
else:
|
|
|
|
self.queue.pop(x)
|
|
|
|
heapq.heapify(self.queue)
|
|
|
|
self.server.queue_updated()
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
def get_history(self):
|
|
|
|
with self.mutex:
|
|
|
|
return copy.deepcopy(self.history)
|
|
|
|
|
|
|
|
def wipe_history(self):
|
|
|
|
with self.mutex:
|
|
|
|
self.history = {}
|
|
|
|
|
|
|
|
def delete_history_item(self, id_to_delete):
|
|
|
|
with self.mutex:
|
|
|
|
self.history.pop(id_to_delete, None)
|