59 lines
1.8 KiB
Python
59 lines
1.8 KiB
Python
|
import torch
|
||
|
import comfy.model_management
|
||
|
import comfy.sample
|
||
|
import comfy.samplers
|
||
|
import comfy.utils
|
||
|
|
||
|
|
||
|
class PerpNeg:
|
||
|
@classmethod
|
||
|
def INPUT_TYPES(s):
|
||
|
return {"required": {"model": ("MODEL", ),
|
||
|
"clip": ("CLIP", ),
|
||
|
"neg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0}),
|
||
|
}}
|
||
|
RETURN_TYPES = ("MODEL",)
|
||
|
FUNCTION = "patch"
|
||
|
|
||
|
CATEGORY = "_for_testing"
|
||
|
|
||
|
def patch(self, model, clip, neg_scale):
|
||
|
m = model.clone()
|
||
|
|
||
|
tokens = clip.tokenize("")
|
||
|
nocond, nocond_pooled = clip.encode_from_tokens(tokens, return_pooled=True)
|
||
|
nocond = [[nocond, {"pooled_output": nocond_pooled}]]
|
||
|
nocond = comfy.sample.convert_cond(nocond)
|
||
|
|
||
|
def cfg_function(args):
|
||
|
model = args["model"]
|
||
|
noise_pred_pos = args["cond_denoised"]
|
||
|
noise_pred_neg = args["uncond_denoised"]
|
||
|
cond_scale = args["cond_scale"]
|
||
|
x = args["input"]
|
||
|
sigma = args["sigma"]
|
||
|
model_options = args["model_options"]
|
||
|
|
||
|
(noise_pred_nocond, _) = comfy.samplers.calc_cond_uncond_batch(model, nocond, None, x, sigma, model_options)
|
||
|
|
||
|
pos = noise_pred_pos - noise_pred_nocond
|
||
|
neg = noise_pred_neg - noise_pred_nocond
|
||
|
perp = ((torch.mul(pos, neg).sum())/(torch.norm(neg)**2)) * neg
|
||
|
perp_neg = perp * neg_scale
|
||
|
cfg_result = noise_pred_nocond + cond_scale*(pos - perp_neg)
|
||
|
cfg_result = x - cfg_result
|
||
|
return cfg_result
|
||
|
|
||
|
m.set_model_sampler_cfg_function(cfg_function)
|
||
|
|
||
|
return (m, )
|
||
|
|
||
|
|
||
|
NODE_CLASS_MAPPINGS = {
|
||
|
"PerpNeg": PerpNeg,
|
||
|
}
|
||
|
|
||
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
||
|
"PerpNeg": "Perp-Neg",
|
||
|
}
|