121 lines
5.7 KiB
Python
121 lines
5.7 KiB
Python
|
from comfy import sd1_clip
|
||
|
from transformers import T5TokenizerFast, BertTokenizer, BertModel, modeling_utils, BertConfig
|
||
|
from .spiece_tokenizer import SPieceTokenizer
|
||
|
import comfy.text_encoders.t5
|
||
|
import os
|
||
|
|
||
|
import torch
|
||
|
import contextlib
|
||
|
|
||
|
@contextlib.contextmanager
|
||
|
def use_comfy_ops(ops, device=None, dtype=None):
|
||
|
old_torch_nn_linear = torch.nn.Linear
|
||
|
force_device = device
|
||
|
force_dtype = dtype
|
||
|
def linear_with_dtype(in_features: int, out_features: int, bias: bool = True, device=None, dtype=None):
|
||
|
if force_device is not None:
|
||
|
device = force_device
|
||
|
if force_dtype is not None:
|
||
|
dtype = force_dtype
|
||
|
return ops.Linear(in_features, out_features, bias=bias, device=device, dtype=dtype)
|
||
|
|
||
|
torch.nn.Linear = linear_with_dtype
|
||
|
try:
|
||
|
yield
|
||
|
finally:
|
||
|
torch.nn.Linear = old_torch_nn_linear
|
||
|
|
||
|
|
||
|
class RobertaWrapper(torch.nn.Module):
|
||
|
def __init__(self, config_dict, dtype, device, operations):
|
||
|
super().__init__()
|
||
|
config = BertConfig(**config_dict)
|
||
|
with use_comfy_ops(operations, device, dtype):
|
||
|
with modeling_utils.no_init_weights():
|
||
|
self.bert = BertModel(config, add_pooling_layer=False)
|
||
|
|
||
|
self.num_layers = config.num_hidden_layers
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.bert.get_input_embeddings()
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
return self.bert.set_input_embeddings(value)
|
||
|
|
||
|
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True):
|
||
|
intermediate = None
|
||
|
out = self.bert(input_ids=input_tokens, output_hidden_states=intermediate_output is not None, attention_mask=attention_mask)
|
||
|
return out.last_hidden_state, intermediate, out.pooler_output
|
||
|
|
||
|
class HyditBertModel(sd1_clip.SDClipModel):
|
||
|
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None):
|
||
|
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip.json")
|
||
|
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 101, "end": 102, "pad": 0}, model_class=RobertaWrapper, enable_attention_masks=True, return_attention_masks=True)
|
||
|
|
||
|
class HyditBertTokenizer(sd1_clip.SDTokenizer):
|
||
|
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||
|
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip_tokenizer")
|
||
|
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=1024, embedding_key='chinese_roberta', tokenizer_class=BertTokenizer)
|
||
|
|
||
|
|
||
|
class MT5XLModel(sd1_clip.SDClipModel):
|
||
|
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None):
|
||
|
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_config_xl.json")
|
||
|
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, return_attention_masks=True)
|
||
|
|
||
|
class MT5XLTokenizer(sd1_clip.SDTokenizer):
|
||
|
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||
|
#tokenizer_path = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_tokenizer"), "spiece.model")
|
||
|
tokenizer = tokenizer_data.get("spiece_model", None)
|
||
|
super().__init__(tokenizer, pad_with_end=False, embedding_size=2048, embedding_key='mt5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
|
||
|
|
||
|
def state_dict(self):
|
||
|
return {"spiece_model": self.tokenizer.serialize_model()}
|
||
|
|
||
|
class HyditTokenizer:
|
||
|
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||
|
mt5_tokenizer_data = tokenizer_data.get("mt5xl.spiece_model", None)
|
||
|
self.hydit_clip = HyditBertTokenizer(embedding_directory=embedding_directory)
|
||
|
self.mt5xl = MT5XLTokenizer(tokenizer_data={"spiece_model": mt5_tokenizer_data}, embedding_directory=embedding_directory)
|
||
|
|
||
|
def tokenize_with_weights(self, text:str, return_word_ids=False):
|
||
|
out = {}
|
||
|
out["hydit_clip"] = self.hydit_clip.tokenize_with_weights(text, return_word_ids)
|
||
|
out["mt5xl"] = self.mt5xl.tokenize_with_weights(text, return_word_ids)
|
||
|
return out
|
||
|
|
||
|
def untokenize(self, token_weight_pair):
|
||
|
return self.hydit_clip.untokenize(token_weight_pair)
|
||
|
|
||
|
def state_dict(self):
|
||
|
return {"mt5xl.spiece_model": self.mt5xl.state_dict()["spiece_model"]}
|
||
|
|
||
|
class HyditModel(torch.nn.Module):
|
||
|
def __init__(self, device="cpu", dtype=None):
|
||
|
super().__init__()
|
||
|
self.hydit_clip = HyditBertModel()
|
||
|
self.mt5xl = MT5XLModel()
|
||
|
|
||
|
self.dtypes = set()
|
||
|
if dtype is not None:
|
||
|
self.dtypes.add(dtype)
|
||
|
|
||
|
def encode_token_weights(self, token_weight_pairs):
|
||
|
hydit_out = self.hydit_clip.encode_token_weights(token_weight_pairs["hydit_clip"])
|
||
|
mt5_out = self.mt5xl.encode_token_weights(token_weight_pairs["mt5xl"])
|
||
|
return hydit_out[0], hydit_out[1], {"attention_mask": hydit_out[2]["attention_mask"], "conditioning_mt5xl": mt5_out[0], "attention_mask_mt5xl": mt5_out[2]["attention_mask"]}
|
||
|
|
||
|
def load_sd(self, sd):
|
||
|
if "bert.encoder.layer.0.attention.self.query.weight" in sd:
|
||
|
return self.hydit_clip.load_sd(sd)
|
||
|
else:
|
||
|
return self.mt5xl.load_sd(sd)
|
||
|
|
||
|
def set_clip_options(self, options):
|
||
|
self.hydit_clip.set_clip_options(options)
|
||
|
self.mt5xl.set_clip_options(options)
|
||
|
|
||
|
def reset_clip_options(self):
|
||
|
self.hydit_clip.reset_clip_options()
|
||
|
self.mt5xl.reset_clip_options()
|