from comfy import sd1_clip from transformers import T5TokenizerFast, BertTokenizer, BertModel, modeling_utils, BertConfig from .spiece_tokenizer import SPieceTokenizer import comfy.text_encoders.t5 import os import torch import contextlib @contextlib.contextmanager def use_comfy_ops(ops, device=None, dtype=None): old_torch_nn_linear = torch.nn.Linear force_device = device force_dtype = dtype def linear_with_dtype(in_features: int, out_features: int, bias: bool = True, device=None, dtype=None): if force_device is not None: device = force_device if force_dtype is not None: dtype = force_dtype return ops.Linear(in_features, out_features, bias=bias, device=device, dtype=dtype) torch.nn.Linear = linear_with_dtype try: yield finally: torch.nn.Linear = old_torch_nn_linear class RobertaWrapper(torch.nn.Module): def __init__(self, config_dict, dtype, device, operations): super().__init__() config = BertConfig(**config_dict) with use_comfy_ops(operations, device, dtype): with modeling_utils.no_init_weights(): self.bert = BertModel(config, add_pooling_layer=False) self.num_layers = config.num_hidden_layers def get_input_embeddings(self): return self.bert.get_input_embeddings() def set_input_embeddings(self, value): return self.bert.set_input_embeddings(value) def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True): intermediate = None out = self.bert(input_ids=input_tokens, output_hidden_states=intermediate_output is not None, attention_mask=attention_mask) return out.last_hidden_state, intermediate, out.pooler_output class HyditBertModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None): textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip.json") super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 101, "end": 102, "pad": 0}, model_class=RobertaWrapper, enable_attention_masks=True, return_attention_masks=True) class HyditBertTokenizer(sd1_clip.SDTokenizer): def __init__(self, embedding_directory=None, tokenizer_data={}): tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip_tokenizer") super().__init__(tokenizer_path, pad_with_end=False, embedding_size=1024, embedding_key='chinese_roberta', tokenizer_class=BertTokenizer) class MT5XLModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None): textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_config_xl.json") super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, return_attention_masks=True) class MT5XLTokenizer(sd1_clip.SDTokenizer): def __init__(self, embedding_directory=None, tokenizer_data={}): #tokenizer_path = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_tokenizer"), "spiece.model") tokenizer = tokenizer_data.get("spiece_model", None) super().__init__(tokenizer, pad_with_end=False, embedding_size=2048, embedding_key='mt5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256) def state_dict(self): return {"spiece_model": self.tokenizer.serialize_model()} class HyditTokenizer: def __init__(self, embedding_directory=None, tokenizer_data={}): mt5_tokenizer_data = tokenizer_data.get("mt5xl.spiece_model", None) self.hydit_clip = HyditBertTokenizer(embedding_directory=embedding_directory) self.mt5xl = MT5XLTokenizer(tokenizer_data={"spiece_model": mt5_tokenizer_data}, embedding_directory=embedding_directory) def tokenize_with_weights(self, text:str, return_word_ids=False): out = {} out["hydit_clip"] = self.hydit_clip.tokenize_with_weights(text, return_word_ids) out["mt5xl"] = self.mt5xl.tokenize_with_weights(text, return_word_ids) return out def untokenize(self, token_weight_pair): return self.hydit_clip.untokenize(token_weight_pair) def state_dict(self): return {"mt5xl.spiece_model": self.mt5xl.state_dict()["spiece_model"]} class HyditModel(torch.nn.Module): def __init__(self, device="cpu", dtype=None): super().__init__() self.hydit_clip = HyditBertModel() self.mt5xl = MT5XLModel() self.dtypes = set() if dtype is not None: self.dtypes.add(dtype) def encode_token_weights(self, token_weight_pairs): hydit_out = self.hydit_clip.encode_token_weights(token_weight_pairs["hydit_clip"]) mt5_out = self.mt5xl.encode_token_weights(token_weight_pairs["mt5xl"]) return hydit_out[0], hydit_out[1], {"attention_mask": hydit_out[2]["attention_mask"], "conditioning_mt5xl": mt5_out[0], "attention_mask_mt5xl": mt5_out[2]["attention_mask"]} def load_sd(self, sd): if "bert.encoder.layer.0.attention.self.query.weight" in sd: return self.hydit_clip.load_sd(sd) else: return self.mt5xl.load_sd(sd) def set_clip_options(self, options): self.hydit_clip.set_clip_options(options) self.mt5xl.set_clip_options(options) def reset_clip_options(self): self.hydit_clip.reset_clip_options() self.mt5xl.reset_clip_options()