2023-09-22 02:23:01 +00:00
|
|
|
import comfy.utils
|
2023-11-20 08:55:51 +00:00
|
|
|
import torch
|
2023-09-22 02:23:01 +00:00
|
|
|
|
|
|
|
def reshape_latent_to(target_shape, latent):
|
|
|
|
if latent.shape[1:] != target_shape[1:]:
|
|
|
|
latent = comfy.utils.common_upscale(latent, target_shape[3], target_shape[2], "bilinear", "center")
|
|
|
|
return comfy.utils.repeat_to_batch_size(latent, target_shape[0])
|
|
|
|
|
|
|
|
|
|
|
|
class LatentAdd:
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
|
|
|
|
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
|
|
FUNCTION = "op"
|
|
|
|
|
|
|
|
CATEGORY = "latent/advanced"
|
|
|
|
|
|
|
|
def op(self, samples1, samples2):
|
|
|
|
samples_out = samples1.copy()
|
|
|
|
|
|
|
|
s1 = samples1["samples"]
|
|
|
|
s2 = samples2["samples"]
|
|
|
|
|
|
|
|
s2 = reshape_latent_to(s1.shape, s2)
|
|
|
|
samples_out["samples"] = s1 + s2
|
|
|
|
return (samples_out,)
|
|
|
|
|
|
|
|
class LatentSubtract:
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
|
|
|
|
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
|
|
FUNCTION = "op"
|
|
|
|
|
|
|
|
CATEGORY = "latent/advanced"
|
|
|
|
|
|
|
|
def op(self, samples1, samples2):
|
|
|
|
samples_out = samples1.copy()
|
|
|
|
|
|
|
|
s1 = samples1["samples"]
|
|
|
|
s2 = samples2["samples"]
|
|
|
|
|
|
|
|
s2 = reshape_latent_to(s1.shape, s2)
|
|
|
|
samples_out["samples"] = s1 - s2
|
|
|
|
return (samples_out,)
|
|
|
|
|
2023-09-22 05:33:46 +00:00
|
|
|
class LatentMultiply:
|
2023-09-22 02:23:01 +00:00
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {"required": { "samples": ("LATENT",),
|
|
|
|
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
|
|
|
|
}}
|
|
|
|
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
|
|
FUNCTION = "op"
|
|
|
|
|
|
|
|
CATEGORY = "latent/advanced"
|
|
|
|
|
|
|
|
def op(self, samples, multiplier):
|
|
|
|
samples_out = samples.copy()
|
|
|
|
|
|
|
|
s1 = samples["samples"]
|
|
|
|
samples_out["samples"] = s1 * multiplier
|
|
|
|
return (samples_out,)
|
|
|
|
|
2023-11-20 08:55:51 +00:00
|
|
|
class LatentInterpolate:
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {"required": { "samples1": ("LATENT",),
|
|
|
|
"samples2": ("LATENT",),
|
|
|
|
"ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
|
|
}}
|
|
|
|
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
|
|
FUNCTION = "op"
|
|
|
|
|
|
|
|
CATEGORY = "latent/advanced"
|
|
|
|
|
|
|
|
def op(self, samples1, samples2, ratio):
|
|
|
|
samples_out = samples1.copy()
|
|
|
|
|
|
|
|
s1 = samples1["samples"]
|
|
|
|
s2 = samples2["samples"]
|
|
|
|
|
|
|
|
s2 = reshape_latent_to(s1.shape, s2)
|
|
|
|
|
|
|
|
m1 = torch.linalg.vector_norm(s1, dim=(1))
|
|
|
|
m2 = torch.linalg.vector_norm(s2, dim=(1))
|
|
|
|
|
|
|
|
s1 = torch.nan_to_num(s1 / m1)
|
|
|
|
s2 = torch.nan_to_num(s2 / m2)
|
|
|
|
|
|
|
|
t = (s1 * ratio + s2 * (1.0 - ratio))
|
|
|
|
mt = torch.linalg.vector_norm(t, dim=(1))
|
|
|
|
st = torch.nan_to_num(t / mt)
|
|
|
|
|
|
|
|
samples_out["samples"] = st * (m1 * ratio + m2 * (1.0 - ratio))
|
|
|
|
return (samples_out,)
|
|
|
|
|
2023-12-16 06:21:00 +00:00
|
|
|
class LatentBatch:
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
|
|
|
|
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
|
|
FUNCTION = "batch"
|
|
|
|
|
|
|
|
CATEGORY = "latent/batch"
|
|
|
|
|
|
|
|
def batch(self, samples1, samples2):
|
|
|
|
samples_out = samples1.copy()
|
|
|
|
s1 = samples1["samples"]
|
|
|
|
s2 = samples2["samples"]
|
|
|
|
|
|
|
|
if s1.shape[1:] != s2.shape[1:]:
|
|
|
|
s2 = comfy.utils.common_upscale(s2, s1.shape[3], s1.shape[2], "bilinear", "center")
|
|
|
|
s = torch.cat((s1, s2), dim=0)
|
|
|
|
samples_out["samples"] = s
|
|
|
|
samples_out["batch_index"] = samples1.get("batch_index", [x for x in range(0, s1.shape[0])]) + samples2.get("batch_index", [x for x in range(0, s2.shape[0])])
|
|
|
|
return (samples_out,)
|
|
|
|
|
2024-01-27 04:13:02 +00:00
|
|
|
class LatentBatchSeedBehavior:
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {"required": { "samples": ("LATENT",),
|
2024-02-02 09:31:35 +00:00
|
|
|
"seed_behavior": (["random", "fixed"],{"default": "fixed"}),}}
|
2024-01-27 04:13:02 +00:00
|
|
|
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
|
|
FUNCTION = "op"
|
|
|
|
|
|
|
|
CATEGORY = "latent/advanced"
|
|
|
|
|
|
|
|
def op(self, samples, seed_behavior):
|
|
|
|
samples_out = samples.copy()
|
|
|
|
latent = samples["samples"]
|
|
|
|
if seed_behavior == "random":
|
|
|
|
if 'batch_index' in samples_out:
|
|
|
|
samples_out.pop('batch_index')
|
|
|
|
elif seed_behavior == "fixed":
|
|
|
|
batch_number = samples_out.get("batch_index", [0])[0]
|
|
|
|
samples_out["batch_index"] = [batch_number] * latent.shape[0]
|
|
|
|
|
|
|
|
return (samples_out,)
|
|
|
|
|
2024-10-15 19:00:36 +00:00
|
|
|
class LatentApplyOperation:
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {"required": { "samples": ("LATENT",),
|
|
|
|
"operation": ("LATENT_OPERATION",),
|
|
|
|
}}
|
|
|
|
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
|
|
FUNCTION = "op"
|
|
|
|
|
|
|
|
CATEGORY = "latent/advanced/operations"
|
|
|
|
EXPERIMENTAL = True
|
|
|
|
|
|
|
|
def op(self, samples, operation):
|
|
|
|
samples_out = samples.copy()
|
|
|
|
|
|
|
|
s1 = samples["samples"]
|
|
|
|
samples_out["samples"] = operation(latent=s1)
|
|
|
|
return (samples_out,)
|
|
|
|
|
|
|
|
class LatentApplyOperationCFG:
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {"required": { "model": ("MODEL",),
|
|
|
|
"operation": ("LATENT_OPERATION",),
|
|
|
|
}}
|
|
|
|
RETURN_TYPES = ("MODEL",)
|
|
|
|
FUNCTION = "patch"
|
|
|
|
|
|
|
|
CATEGORY = "latent/advanced/operations"
|
|
|
|
EXPERIMENTAL = True
|
|
|
|
|
|
|
|
def patch(self, model, operation):
|
|
|
|
m = model.clone()
|
|
|
|
|
|
|
|
def pre_cfg_function(args):
|
|
|
|
conds_out = args["conds_out"]
|
|
|
|
if len(conds_out) == 2:
|
|
|
|
conds_out[0] = operation(latent=(conds_out[0] - conds_out[1])) + conds_out[1]
|
|
|
|
else:
|
|
|
|
conds_out[0] = operation(latent=conds_out[0])
|
|
|
|
return conds_out
|
|
|
|
|
|
|
|
m.set_model_sampler_pre_cfg_function(pre_cfg_function)
|
|
|
|
return (m, )
|
|
|
|
|
|
|
|
class LatentOperationTonemapReinhard:
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {"required": { "multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}),
|
|
|
|
}}
|
|
|
|
|
|
|
|
RETURN_TYPES = ("LATENT_OPERATION",)
|
|
|
|
FUNCTION = "op"
|
|
|
|
|
|
|
|
CATEGORY = "latent/advanced/operations"
|
|
|
|
EXPERIMENTAL = True
|
|
|
|
|
|
|
|
def op(self, multiplier):
|
|
|
|
def tonemap_reinhard(latent, **kwargs):
|
|
|
|
latent_vector_magnitude = (torch.linalg.vector_norm(latent, dim=(1)) + 0.0000000001)[:,None]
|
|
|
|
normalized_latent = latent / latent_vector_magnitude
|
|
|
|
|
|
|
|
mean = torch.mean(latent_vector_magnitude, dim=(1,2,3), keepdim=True)
|
|
|
|
std = torch.std(latent_vector_magnitude, dim=(1,2,3), keepdim=True)
|
|
|
|
|
|
|
|
top = (std * 5 + mean) * multiplier
|
|
|
|
|
|
|
|
#reinhard
|
|
|
|
latent_vector_magnitude *= (1.0 / top)
|
|
|
|
new_magnitude = latent_vector_magnitude / (latent_vector_magnitude + 1.0)
|
|
|
|
new_magnitude *= top
|
|
|
|
|
|
|
|
return normalized_latent * new_magnitude
|
|
|
|
return (tonemap_reinhard,)
|
|
|
|
|
2024-10-16 09:25:31 +00:00
|
|
|
class LatentOperationSharpen:
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {"required": {
|
|
|
|
"sharpen_radius": ("INT", {
|
|
|
|
"default": 9,
|
|
|
|
"min": 1,
|
|
|
|
"max": 31,
|
|
|
|
"step": 1
|
|
|
|
}),
|
|
|
|
"sigma": ("FLOAT", {
|
|
|
|
"default": 1.0,
|
|
|
|
"min": 0.1,
|
|
|
|
"max": 10.0,
|
|
|
|
"step": 0.1
|
|
|
|
}),
|
|
|
|
"alpha": ("FLOAT", {
|
|
|
|
"default": 0.1,
|
|
|
|
"min": 0.0,
|
|
|
|
"max": 5.0,
|
|
|
|
"step": 0.01
|
|
|
|
}),
|
|
|
|
}}
|
|
|
|
|
|
|
|
RETURN_TYPES = ("LATENT_OPERATION",)
|
|
|
|
FUNCTION = "op"
|
|
|
|
|
|
|
|
CATEGORY = "latent/advanced/operations"
|
|
|
|
EXPERIMENTAL = True
|
|
|
|
|
|
|
|
def op(self, sharpen_radius, sigma, alpha):
|
|
|
|
def sharpen(latent, **kwargs):
|
|
|
|
luminance = (torch.linalg.vector_norm(latent, dim=(1)) + 1e-6)[:,None]
|
|
|
|
normalized_latent = latent / luminance
|
|
|
|
channels = latent.shape[1]
|
|
|
|
|
|
|
|
kernel_size = sharpen_radius * 2 + 1
|
|
|
|
kernel = comfy_extras.nodes_post_processing.gaussian_kernel(kernel_size, sigma, device=luminance.device)
|
|
|
|
center = kernel_size // 2
|
|
|
|
|
|
|
|
kernel *= alpha * -10
|
|
|
|
kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0
|
|
|
|
|
|
|
|
padded_image = torch.nn.functional.pad(normalized_latent, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), 'reflect')
|
|
|
|
sharpened = torch.nn.functional.conv2d(padded_image, kernel.repeat(channels, 1, 1).unsqueeze(1), padding=kernel_size // 2, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius]
|
|
|
|
|
|
|
|
return luminance * sharpened
|
|
|
|
return (sharpen,)
|
|
|
|
|
2023-09-22 02:23:01 +00:00
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
|
|
"LatentAdd": LatentAdd,
|
|
|
|
"LatentSubtract": LatentSubtract,
|
2023-09-22 05:33:46 +00:00
|
|
|
"LatentMultiply": LatentMultiply,
|
2023-11-20 08:55:51 +00:00
|
|
|
"LatentInterpolate": LatentInterpolate,
|
2023-12-16 06:21:00 +00:00
|
|
|
"LatentBatch": LatentBatch,
|
2024-01-27 04:13:02 +00:00
|
|
|
"LatentBatchSeedBehavior": LatentBatchSeedBehavior,
|
2024-10-15 19:00:36 +00:00
|
|
|
"LatentApplyOperation": LatentApplyOperation,
|
|
|
|
"LatentApplyOperationCFG": LatentApplyOperationCFG,
|
|
|
|
"LatentOperationTonemapReinhard": LatentOperationTonemapReinhard,
|
2024-10-16 09:25:31 +00:00
|
|
|
"LatentOperationSharpen": LatentOperationSharpen,
|
2023-09-22 02:23:01 +00:00
|
|
|
}
|