ComfyUI/comfy/model_base.py

250 lines
11 KiB
Python
Raw Normal View History

2023-06-09 16:24:24 +00:00
import torch
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
from comfy.ldm.modules.diffusionmodules.openaimodel import Timestep
2023-08-26 15:52:07 +00:00
import comfy.model_management
import comfy.conds
2023-06-09 16:24:24 +00:00
import numpy as np
from enum import Enum
from . import utils
2023-06-09 16:24:24 +00:00
class ModelType(Enum):
EPS = 1
V_PREDICTION = 2
2023-06-09 16:24:24 +00:00
class BaseModel(torch.nn.Module):
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
2023-06-09 16:24:24 +00:00
super().__init__()
unet_config = model_config.unet_config
self.latent_format = model_config.latent_format
self.model_config = model_config
self.register_schedule(given_betas=None, beta_schedule=model_config.beta_schedule, timesteps=1000, linear_start=0.00085, linear_end=0.012, cosine_s=8e-3)
if not unet_config.get("disable_unet_model_creation", False):
self.diffusion_model = UNetModel(**unet_config, device=device)
self.model_type = model_type
self.adm_channels = unet_config.get("adm_in_channels", None)
if self.adm_channels is None:
2023-06-09 16:24:24 +00:00
self.adm_channels = 0
self.inpaint_model = False
print("model_type", model_type.name)
2023-06-09 16:24:24 +00:00
print("adm", self.adm_channels)
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
if given_betas is not None:
betas = given_betas
else:
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))
def apply_model(self, x, t, c_concat=None, c_crossattn=None, c_adm=None, control=None, transformer_options={}, **kwargs):
2023-06-09 16:24:24 +00:00
if c_concat is not None:
xc = torch.cat([x] + [c_concat], dim=1)
2023-06-09 16:24:24 +00:00
else:
xc = x
context = c_crossattn
dtype = self.get_dtype()
xc = xc.to(dtype)
t = t.to(dtype)
context = context.to(dtype)
if c_adm is not None:
c_adm = c_adm.to(dtype)
return self.diffusion_model(xc, t, context=context, y=c_adm, control=control, transformer_options=transformer_options).float()
2023-06-09 16:24:24 +00:00
def get_dtype(self):
return self.diffusion_model.dtype
def is_adm(self):
return self.adm_channels > 0
def encode_adm(self, **kwargs):
return None
def extra_conds(self, **kwargs):
out = {}
if self.inpaint_model:
concat_keys = ("mask", "masked_image")
cond_concat = []
denoise_mask = kwargs.get("denoise_mask", None)
latent_image = kwargs.get("latent_image", None)
noise = kwargs.get("noise", None)
device = kwargs["device"]
def blank_inpaint_image_like(latent_image):
blank_image = torch.ones_like(latent_image)
# these are the values for "zero" in pixel space translated to latent space
blank_image[:,0] *= 0.8223
blank_image[:,1] *= -0.6876
blank_image[:,2] *= 0.6364
blank_image[:,3] *= 0.1380
return blank_image
for ck in concat_keys:
if denoise_mask is not None:
if ck == "mask":
cond_concat.append(denoise_mask[:,:1].to(device))
elif ck == "masked_image":
cond_concat.append(latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space
else:
if ck == "mask":
cond_concat.append(torch.ones_like(noise)[:,:1])
elif ck == "masked_image":
cond_concat.append(blank_inpaint_image_like(noise))
data = torch.cat(cond_concat, dim=1)
out['c_concat'] = comfy.conds.CONDNoiseShape(data)
adm = self.encode_adm(**kwargs)
if adm is not None:
out['c_adm'] = comfy.conds.CONDRegular(adm)
return out
def load_model_weights(self, sd, unet_prefix=""):
to_load = {}
keys = list(sd.keys())
for k in keys:
if k.startswith(unet_prefix):
to_load[k[len(unet_prefix):]] = sd.pop(k)
m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
if len(m) > 0:
print("unet missing:", m)
if len(u) > 0:
print("unet unexpected:", u)
del to_load
return self
def process_latent_in(self, latent):
return self.latent_format.process_in(latent)
def process_latent_out(self, latent):
return self.latent_format.process_out(latent)
def state_dict_for_saving(self, clip_state_dict, vae_state_dict):
clip_state_dict = self.model_config.process_clip_state_dict_for_saving(clip_state_dict)
2023-08-26 15:52:07 +00:00
unet_sd = self.diffusion_model.state_dict()
unet_state_dict = {}
for k in unet_sd:
unet_state_dict[k] = comfy.model_management.resolve_lowvram_weight(unet_sd[k], self.diffusion_model, k)
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
vae_state_dict = self.model_config.process_vae_state_dict_for_saving(vae_state_dict)
if self.get_dtype() == torch.float16:
clip_state_dict = utils.convert_sd_to(clip_state_dict, torch.float16)
vae_state_dict = utils.convert_sd_to(vae_state_dict, torch.float16)
if self.model_type == ModelType.V_PREDICTION:
unet_state_dict["v_pred"] = torch.tensor([])
return {**unet_state_dict, **vae_state_dict, **clip_state_dict}
2023-09-01 19:18:25 +00:00
def set_inpaint(self):
self.inpaint_model = True
2023-09-01 19:18:25 +00:00
2023-08-15 03:41:52 +00:00
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0):
adm_inputs = []
weights = []
noise_aug = []
for unclip_cond in unclip_conditioning:
for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
weight = unclip_cond["strength"]
noise_augment = unclip_cond["noise_augmentation"]
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
weights.append(weight)
noise_aug.append(noise_augment)
adm_inputs.append(adm_out)
if len(noise_aug) > 1:
adm_out = torch.stack(adm_inputs).sum(0)
noise_augment = noise_augment_merge
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
adm_out = torch.cat((c_adm, noise_level_emb), 1)
return adm_out
2023-06-09 16:24:24 +00:00
class SD21UNCLIP(BaseModel):
def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None):
super().__init__(model_config, model_type, device=device)
2023-06-09 16:24:24 +00:00
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config)
def encode_adm(self, **kwargs):
unclip_conditioning = kwargs.get("unclip_conditioning", None)
device = kwargs["device"]
2023-08-15 03:41:52 +00:00
if unclip_conditioning is None:
return torch.zeros((1, self.adm_channels))
else:
2023-08-15 03:41:52 +00:00
return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05))
def sdxl_pooled(args, noise_augmentor):
if "unclip_conditioning" in args:
return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor)[:,:1280]
else:
return args["pooled_output"]
class SDXLRefiner(BaseModel):
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
super().__init__(model_config, model_type, device=device)
self.embedder = Timestep(256)
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
def encode_adm(self, **kwargs):
clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
width = kwargs.get("width", 768)
height = kwargs.get("height", 768)
crop_w = kwargs.get("crop_w", 0)
crop_h = kwargs.get("crop_h", 0)
if kwargs.get("prompt_type", "") == "negative":
aesthetic_score = kwargs.get("aesthetic_score", 2.5)
else:
aesthetic_score = kwargs.get("aesthetic_score", 6)
out = []
out.append(self.embedder(torch.Tensor([height])))
2023-06-28 04:38:07 +00:00
out.append(self.embedder(torch.Tensor([width])))
out.append(self.embedder(torch.Tensor([crop_h])))
2023-06-28 04:38:07 +00:00
out.append(self.embedder(torch.Tensor([crop_w])))
out.append(self.embedder(torch.Tensor([aesthetic_score])))
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
class SDXL(BaseModel):
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
super().__init__(model_config, model_type, device=device)
self.embedder = Timestep(256)
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
def encode_adm(self, **kwargs):
clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
width = kwargs.get("width", 768)
height = kwargs.get("height", 768)
crop_w = kwargs.get("crop_w", 0)
crop_h = kwargs.get("crop_h", 0)
target_width = kwargs.get("target_width", width)
target_height = kwargs.get("target_height", height)
out = []
out.append(self.embedder(torch.Tensor([height])))
2023-06-28 04:38:07 +00:00
out.append(self.embedder(torch.Tensor([width])))
out.append(self.embedder(torch.Tensor([crop_h])))
2023-06-28 04:38:07 +00:00
out.append(self.embedder(torch.Tensor([crop_w])))
out.append(self.embedder(torch.Tensor([target_height])))
2023-06-28 04:38:07 +00:00
out.append(self.embedder(torch.Tensor([target_width])))
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)