qnloft-stock/fp/板块数据入库.py

265 lines
8.9 KiB
Python

from pyecharts import options as opts
from pyecharts.charts import Bar
from DB.model.ConceptSector import ConceptSector
from DB.model.IndustrySector import IndustrySector
from DB.model.StockByConceptSector import StockByConceptSector
from DB.model.StockByIndustrySector import StockByIndustrySector
from DB.sqlite_db_main import SqliteDbMain, config
from utils.comm import *
from utils.stock_web_api import execute_stock_web_api_method, stock_web_api_industry_summary, \
stock_web_api_concept_name
class SectorOpt:
def __init__(self, trade_date=datetime.now()):
self.trade_date = trade_date.strftime('%Y%m%d')
self.db_main = SqliteDbMain(config.stock_sector_db)
def save_hy_sector(self):
"""
行业板块
:return:
"""
print("开始拉取行业板块数据--->>")
hy_sector_df = execute_stock_web_api_method(func=stock_web_api_industry_summary)
if hy_sector_df is None:
return None
entries = []
for index, row in hy_sector_df.iterrows():
entry = IndustrySector(
trade_date=self.trade_date,
sector_name=row['板块'],
pct_change=row['涨跌幅'],
total_volume=row['总成交量'],
total_turnover=row['总成交额'],
net_inflows=row['净流入'],
rising_count=row['上涨家数'],
falling_count=row['下跌家数'],
average_price=row['均价'],
leading_stock=row['领涨股'],
leading_stock_latest_price=row['领涨股-最新价'],
leading_stock_pct_change=row['领涨股-涨跌幅']
)
entries.append(entry)
self.db_main.insert_all_entry(entries)
print("<<---行业板块数据拉取结束")
self.db_main.get_db_size()
def save_gn_sector(self):
"""
概念板块
:return:
"""
print("开始拉取概念板块数据--->>")
# 概念当日的涨幅情况
ths_gn_df = execute_stock_web_api_method(func=stock_web_api_concept_name)
if ths_gn_df is None:
return None
entries = []
for index, row in ths_gn_df.iterrows():
entry = ConceptSector(
trade_date=self.trade_date,
sector_name=row['板块名称'],
sector_code=row['板块代码'],
pct_change=row['涨跌幅'],
total_market=row['总市值'],
rising_count=row['上涨家数'],
falling_count=row['下跌家数'],
new_price=row['最新价'],
leading_stock=row['领涨股票'],
leading_stock_pct_change=row['领涨股票-涨跌幅']
)
entries.append(entry)
self.db_main.insert_all_entry(entries)
print("<<---概念板块数据拉取结束")
self.db_main.get_db_size()
def stock_by_gn_sector(self):
"""
获取概念板块个股(建议每天更新一次)
:return:
"""
for _ in range(5):
try:
# 清空表数据
self.db_main.delete_all_table(StockByConceptSector)
ths_gn_df = ak.stock_board_concept_name_em()
break
except Exception as e:
print("概念板块个股数据拉取错误:", e)
time.sleep(1)
continue
else:
print("概念板块个股数据拉取失败!!!")
return None
entries = []
for index, row in ths_gn_df.iterrows():
bk, bk_code = row['板块名称'], row['板块代码']
print(f"----------- {bk} -------------")
for _ in range(5):
try:
stock_gn_df = ak.stock_board_concept_cons_em(symbol=bk)
break
except Exception as e:
print("概念板块个股-板块成份股 数据拉取错误:", e)
time.sleep(1)
continue
else:
print("概念板块个股-板块成份股 数据拉取失败!!!")
return None
print(stock_gn_df['代码'])
for s_index, s_row in stock_gn_df.iterrows():
entry = StockByConceptSector(
update_date=datetime.now().strftime('%Y%m%d'),
sector_name=bk,
sector_code=row['板块代码'],
stock_name=s_row['名称'],
stock_code=s_row['代码'],
)
entries.append(entry)
self.db_main.insert_all_entry(entries)
def stock_by_hy_sector(self):
"""
获取行业板块个股(建议每周更新一次)
:return:
"""
for _ in range(5):
try:
# 清空表数据
self.db_main.delete_all_table(StockByIndustrySector)
hy_sector_df = ak.stock_board_industry_summary_ths()
break
except Exception as e:
print("行业板块个股数据拉取错误:", e)
time.sleep(1)
continue
else:
print("行业板块个股数据拉取失败!!!")
return None
entries = []
for index, row in hy_sector_df.iterrows():
bk, bk_code = row['板块'], row['序号']
print(f"----------- {bk} -------------")
for _ in range(5):
try:
stock_bk_df = ak.stock_board_industry_cons_ths(symbol=bk)
break
except Exception as e:
print("行业板块个股数据拉取错误:", e)
time.sleep(1)
continue
else:
print("行业板块个股数据拉取失败!!!")
return None
for s_index, s_row in stock_bk_df.iterrows():
entry = StockByIndustrySector(
update_date=datetime.now().strftime('%Y%m%d'),
sector_name=bk,
sector_code=row['序号'],
stock_name=s_row['名称'],
stock_code=s_row['代码'],
)
entries.append(entry)
self.db_main.insert_all_entry(entries)
def get_hy_sector_by_stock_code(self, symbol):
"""
根据股票代码查询所属 行业板块
:param symbol:
:return:
"""
query = self.db_main.session.query(StockByIndustrySector) \
.filter(StockByIndustrySector.stock_code == symbol).order_by(StockByIndustrySector.id)
return self.db_main.pandas_query_by_sql(stmt=query.statement).reset_index()
def get_gn_sector_by_stock_code(self, symbol):
"""
根据股票代码查询所属 概念板块
:param symbol:
:return:
"""
query = self.db_main.session.query(StockByConceptSector) \
.filter(StockByConceptSector.stock_code == symbol).order_by(StockByConceptSector.id)
return self.db_main.pandas_query_by_sql(stmt=query.statement).reset_index()
def industry_generate_chart(self):
"""
行业板块
:return:
"""
industry_num_limit_sql = f"select sector_name from stock_industry_sector where trade_date = '{self.trade_date}' ORDER BY pct_change desc limit 15"
names_res = self.db_main.execute_sql(industry_num_limit_sql)
# 提取结果中的单个列数据(假设你要提取 "收盘价" 这一列)
sector_names = [result.sector_name for result in names_res]
data_sql = f"SELECT sec.trade_date,sec.pct_change from " \
f"stock_industry_sector sec , " \
f"({industry_num_limit_sql}) sec_n " \
f"where sec.sector_name = sec_n.sector_name " \
f"and trade_date in (select trade_date from stock_industry_sector GROUP BY trade_date order by trade_date desc LIMIT 3)"
data_result = self.db_main.execute_sql(data_sql)
df = pd.DataFrame(data_result, columns=['trade_date', 'pct_change'])
# print(df)
grouped = df.groupby('trade_date')['pct_change'].apply(list).reset_index()
self.__generate_chart("行业板块 —— 复盘", grouped, sector_names, 'industry_generate_chart')
def concept_generate_chart(self):
"""
概念板块
:return:
"""
concept_num_limit_sql = f"select sector_name from stock_concept_sector where trade_date = '{self.trade_date}' ORDER BY pct_change desc limit 15"
names_res = self.db_main.execute_sql(concept_num_limit_sql)
# 提取结果中的单个列数据(假设你要提取 "收盘价" 这一列)
sector_names = [result.sector_name for result in names_res]
data_sql = f"SELECT sec.trade_date,sec.pct_change from " \
f"stock_concept_sector sec , " \
f"({concept_num_limit_sql}) sec_n " \
f"where sec.sector_name = sec_n.sector_name " \
f"and trade_date in (select trade_date from stock_concept_sector GROUP BY trade_date order by trade_date desc LIMIT 3)"
data_result = self.db_main.execute_sql(data_sql)
df = pd.DataFrame(data_result, columns=['trade_date', 'pct_change'])
# print(df)
grouped = df.groupby('trade_date')['pct_change'].apply(list).reset_index()
self.__generate_chart("概念板块 —— 复盘", grouped, sector_names, 'concept_generate_chart')
def __generate_chart(self, title, grouped, sector_names, file_name):
c = (
Bar(init_opts=opts.InitOpts(width="100%", height="400px"))
.add_xaxis(sector_names)
.add_yaxis(grouped.loc[0, 'trade_date'], grouped.loc[0, 'pct_change'])
.add_yaxis(grouped.loc[1, 'trade_date'], grouped.loc[1, 'pct_change'])
.add_yaxis(grouped.loc[2, 'trade_date'], grouped.loc[2, 'pct_change'])
.set_global_opts(
title_opts=opts.TitleOpts(title=title, pos_left="center"),
yaxis_opts=opts.AxisOpts(offset=5),
xaxis_opts=opts.AxisOpts(offset=5, axislabel_opts=opts.LabelOpts(rotate=45, interval=0)),
legend_opts=opts.LegendOpts(pos_top="8%")
)
.render(f"html/{self.trade_date}/{file_name}.html")
)
if __name__ == '__main__':
current_date = datetime.now()
if if_run(current_date):
sector = SectorOpt(current_date)
# 行业板块
# sector.save_hy_sector()
# 概念板块
# sector.save_gn_sector()
# 生成报表
# sector.industry_generate_chart()
sector.concept_generate_chart()
# -------》 一下建议一周更新一次
# 行业板块个股
# sector.stock_by_hy_sector()
# 感念板块个股
# sector.stock_by_gn_sector()