# -*- coding: utf-8 -*- # @Author : relakkes@gmail.com # @Time : 2023/12/2 12:55 # @Desc : 滑块相关的工具包 import os from typing import List from urllib.parse import urlparse import cv2 import httpx import numpy as np class Slide: """ copy from https://blog.csdn.net/weixin_43582101 thanks for author update: relakkes """ def __init__(self, gap, bg, gap_size=None, bg_size=None, out=None): """ :param gap: 缺口图片链接或者url :param bg: 带缺口的图片链接或者url """ self.img_dir = os.path.join(os.getcwd(), 'temp_image') if not os.path.exists(self.img_dir): os.makedirs(self.img_dir) bg_resize = bg_size if bg_size else (340, 212) gap_size = gap_size if gap_size else (68, 68) self.bg = self.check_is_img_path(bg, 'bg', resize=bg_resize) self.gap = self.check_is_img_path(gap, 'gap', resize=gap_size) self.out = out if out else os.path.join(self.img_dir, 'out.jpg') @staticmethod def check_is_img_path(img, img_type, resize): if img.startswith('http'): headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;" "q=0.8,application/signed-exchange;v=b3;q=0.9", "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "zh-CN,zh;q=0.9,en-GB;q=0.8,en;q=0.7,ja;q=0.6", "Cache-Control": "max-age=0", "Connection": "keep-alive", "Host": urlparse(img).hostname, "Upgrade-Insecure-Requests": "1", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) " "Chrome/91.0.4472.164 Safari/537.36", } img_res = httpx.get(img, headers=headers) if img_res.status_code == 200: img_path = f'./temp_image/{img_type}.jpg' image = np.asarray(bytearray(img_res.content), dtype="uint8") image = cv2.imdecode(image, cv2.IMREAD_COLOR) if resize: image = cv2.resize(image, dsize=resize) cv2.imwrite(img_path, image) return img_path else: raise Exception(f"保存{img_type}图片失败") else: return img @staticmethod def clear_white(img): """清除图片的空白区域,这里主要清除滑块的空白""" img = cv2.imread(img) rows, cols, channel = img.shape min_x = 255 min_y = 255 max_x = 0 max_y = 0 for x in range(1, rows): for y in range(1, cols): t = set(img[x, y]) if len(t) >= 2: if x <= min_x: min_x = x elif x >= max_x: max_x = x if y <= min_y: min_y = y elif y >= max_y: max_y = y img1 = img[min_x:max_x, min_y: max_y] return img1 def template_match(self, tpl, target): th, tw = tpl.shape[:2] result = cv2.matchTemplate(target, tpl, cv2.TM_CCOEFF_NORMED) # 寻找矩阵(一维数组当作向量,用Mat定义) 中最小值和最大值的位置 min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result) tl = max_loc br = (tl[0] + tw, tl[1] + th) # 绘制矩形边框,将匹配区域标注出来 # target:目标图像 # tl:矩形定点 # br:矩形的宽高 # (0,0,255):矩形边框颜色 # 1:矩形边框大小 cv2.rectangle(target, tl, br, (0, 0, 255), 2) cv2.imwrite(self.out, target) return tl[0] @staticmethod def image_edge_detection(img): edges = cv2.Canny(img, 100, 200) return edges def discern(self): img1 = self.clear_white(self.gap) img1 = cv2.cvtColor(img1, cv2.COLOR_RGB2GRAY) slide = self.image_edge_detection(img1) back = cv2.imread(self.bg, cv2.COLOR_RGB2GRAY) back = self.image_edge_detection(back) slide_pic = cv2.cvtColor(slide, cv2.COLOR_GRAY2RGB) back_pic = cv2.cvtColor(back, cv2.COLOR_GRAY2RGB) x = self.template_match(slide_pic, back_pic) # 输出横坐标, 即 滑块在图片上的位置 return x def get_track_simple(distance) -> List[int]: # 有的检测移动速度的 如果匀速移动会被识别出来,来个简单点的 渐进 # distance为传入的总距离 # 移动轨迹 track: List[int] = [] # 当前位移 current = 0 # 减速阈值 mid = distance * 4 / 5 # 计算间隔 t = 0.2 # 初速度 v = 1 while current < distance: if current < mid: # 加速度为2 a = 4 else: # 加速度为-2 a = -3 v0 = v # 当前速度 v = v0 + a * t # type: ignore # 移动距离 move = v0 * t + 1 / 2 * a * t * t # 当前位移 current += move # type: ignore # 加入轨迹 track.append(round(move)) return track def get_tracks(distance: int, level: str = "easy") -> List[int]: if level == "easy": return get_track_simple(distance) else: from . import easing _, tricks = easing.get_tracks(distance, seconds=2, ease_func="ease_out_expo") return tricks