ComfyUI/comfy/samplers.py

539 lines
22 KiB
Python

from .k_diffusion import sampling as k_diffusion_sampling
from .k_diffusion import external as k_diffusion_external
from .extra_samplers import uni_pc
import torch
import contextlib
import model_management
from .ldm.models.diffusion.ddim import DDIMSampler
from .ldm.modules.diffusionmodules.util import make_ddim_timesteps
class CFGDenoiser(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
def forward(self, x, sigma, uncond, cond, cond_scale):
if len(uncond[0]) == len(cond[0]) and x.shape[0] * x.shape[2] * x.shape[3] < (96 * 96): #TODO check memory instead
x_in = torch.cat([x] * 2)
sigma_in = torch.cat([sigma] * 2)
cond_in = torch.cat([uncond, cond])
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
else:
cond = self.inner_model(x, sigma, cond=cond)
uncond = self.inner_model(x, sigma, cond=uncond)
return uncond + (cond - uncond) * cond_scale
#The main sampling function shared by all the samplers
#Returns predicted noise
def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={}):
def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in):
area = (x_in.shape[2], x_in.shape[3], 0, 0)
strength = 1.0
if 'area' in cond[1]:
area = cond[1]['area']
if 'strength' in cond[1]:
strength = cond[1]['strength']
adm_cond = None
if 'adm' in cond[1]:
adm_cond = cond[1]['adm']
input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
mult = torch.ones_like(input_x) * strength
rr = 8
if area[2] != 0:
for t in range(rr):
mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
if (area[0] + area[2]) < x_in.shape[2]:
for t in range(rr):
mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
if area[3] != 0:
for t in range(rr):
mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
if (area[1] + area[3]) < x_in.shape[3]:
for t in range(rr):
mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))
conditionning = {}
conditionning['c_crossattn'] = cond[0]
if cond_concat_in is not None and len(cond_concat_in) > 0:
cropped = []
for x in cond_concat_in:
cr = x[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
cropped.append(cr)
conditionning['c_concat'] = torch.cat(cropped, dim=1)
if adm_cond is not None:
conditionning['c_adm'] = adm_cond
control = None
if 'control' in cond[1]:
control = cond[1]['control']
return (input_x, mult, conditionning, area, control)
def cond_equal_size(c1, c2):
if c1 is c2:
return True
if c1.keys() != c2.keys():
return False
if 'c_crossattn' in c1:
if c1['c_crossattn'].shape != c2['c_crossattn'].shape:
return False
if 'c_concat' in c1:
if c1['c_concat'].shape != c2['c_concat'].shape:
return False
if 'c_adm' in c1:
if c1['c_adm'].shape != c2['c_adm'].shape:
return False
return True
def can_concat_cond(c1, c2):
if c1[0].shape != c2[0].shape:
return False
if (c1[4] is None) != (c2[4] is None):
return False
if c1[4] is not None:
if c1[4] is not c2[4]:
return False
return cond_equal_size(c1[2], c2[2])
def cond_cat(c_list):
c_crossattn = []
c_concat = []
c_adm = []
for x in c_list:
if 'c_crossattn' in x:
c_crossattn.append(x['c_crossattn'])
if 'c_concat' in x:
c_concat.append(x['c_concat'])
if 'c_adm' in x:
c_adm.append(x['c_adm'])
out = {}
if len(c_crossattn) > 0:
out['c_crossattn'] = [torch.cat(c_crossattn)]
if len(c_concat) > 0:
out['c_concat'] = [torch.cat(c_concat)]
if len(c_adm) > 0:
out['c_adm'] = torch.cat(c_adm)
return out
def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in, model_options):
out_cond = torch.zeros_like(x_in)
out_count = torch.ones_like(x_in)/100000.0
out_uncond = torch.zeros_like(x_in)
out_uncond_count = torch.ones_like(x_in)/100000.0
COND = 0
UNCOND = 1
to_run = []
for x in cond:
p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
if p is None:
continue
to_run += [(p, COND)]
for x in uncond:
p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
if p is None:
continue
to_run += [(p, UNCOND)]
while len(to_run) > 0:
first = to_run[0]
first_shape = first[0][0].shape
to_batch_temp = []
for x in range(len(to_run)):
if can_concat_cond(to_run[x][0], first[0]):
to_batch_temp += [x]
to_batch_temp.reverse()
to_batch = to_batch_temp[:1]
for i in range(1, len(to_batch_temp) + 1):
batch_amount = to_batch_temp[:len(to_batch_temp)//i]
if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area):
to_batch = batch_amount
break
input_x = []
mult = []
c = []
cond_or_uncond = []
area = []
control = None
for x in to_batch:
o = to_run.pop(x)
p = o[0]
input_x += [p[0]]
mult += [p[1]]
c += [p[2]]
area += [p[3]]
cond_or_uncond += [o[1]]
control = p[4]
batch_chunks = len(cond_or_uncond)
input_x = torch.cat(input_x)
c = cond_cat(c)
timestep_ = torch.cat([timestep] * batch_chunks)
if control is not None:
c['control'] = control.get_control(input_x, timestep_, c['c_crossattn'], len(cond_or_uncond))
if 'transformer_options' in model_options:
c['transformer_options'] = model_options['transformer_options']
output = model_function(input_x, timestep_, cond=c).chunk(batch_chunks)
del input_x
model_management.throw_exception_if_processing_interrupted()
for o in range(batch_chunks):
if cond_or_uncond[o] == COND:
out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
else:
out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
del mult
out_cond /= out_count
del out_count
out_uncond /= out_uncond_count
del out_uncond_count
return out_cond, out_uncond
max_total_area = model_management.maximum_batch_area()
cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat, model_options)
return uncond + (cond - uncond) * cond_scale
class CompVisVDenoiser(k_diffusion_external.DiscreteVDDPMDenoiser):
def __init__(self, model, quantize=False, device='cpu'):
super().__init__(model, model.alphas_cumprod, quantize=quantize)
def get_v(self, x, t, cond, **kwargs):
return self.inner_model.apply_model(x, t, cond, **kwargs)
class CFGNoisePredictor(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
self.alphas_cumprod = model.alphas_cumprod
def apply_model(self, x, timestep, cond, uncond, cond_scale, cond_concat=None, model_options={}):
out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, cond_concat, model_options=model_options)
return out
class KSamplerX0Inpaint(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, cond_concat=None, model_options={}):
if denoise_mask is not None:
latent_mask = 1. - denoise_mask
x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask
out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, cond_concat=cond_concat, model_options=model_options)
if denoise_mask is not None:
out *= denoise_mask
if denoise_mask is not None:
out += self.latent_image * latent_mask
return out
def simple_scheduler(model, steps):
sigs = []
ss = len(model.sigmas) / steps
for x in range(steps):
sigs += [float(model.sigmas[-(1 + int(x * ss))])]
sigs += [0.0]
return torch.FloatTensor(sigs)
def ddim_scheduler(model, steps):
sigs = []
ddim_timesteps = make_ddim_timesteps(ddim_discr_method="uniform", num_ddim_timesteps=steps, num_ddpm_timesteps=model.inner_model.inner_model.num_timesteps, verbose=False)
for x in range(len(ddim_timesteps) - 1, -1, -1):
ts = ddim_timesteps[x]
if ts > 999:
ts = 999
sigs.append(model.t_to_sigma(torch.tensor(ts)))
sigs += [0.0]
return torch.FloatTensor(sigs)
def blank_inpaint_image_like(latent_image):
blank_image = torch.ones_like(latent_image)
# these are the values for "zero" in pixel space translated to latent space
blank_image[:,0] *= 0.8223
blank_image[:,1] *= -0.6876
blank_image[:,2] *= 0.6364
blank_image[:,3] *= 0.1380
return blank_image
def create_cond_with_same_area_if_none(conds, c):
if 'area' not in c[1]:
return
c_area = c[1]['area']
smallest = None
for x in conds:
if 'area' in x[1]:
a = x[1]['area']
if c_area[2] >= a[2] and c_area[3] >= a[3]:
if a[0] + a[2] >= c_area[0] + c_area[2]:
if a[1] + a[3] >= c_area[1] + c_area[3]:
if smallest is None:
smallest = x
elif 'area' not in smallest[1]:
smallest = x
else:
if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]:
smallest = x
else:
if smallest is None:
smallest = x
if smallest is None:
return
if 'area' in smallest[1]:
if smallest[1]['area'] == c_area:
return
n = c[1].copy()
conds += [[smallest[0], n]]
def apply_control_net_to_equal_area(conds, uncond):
cond_cnets = []
cond_other = []
uncond_cnets = []
uncond_other = []
for t in range(len(conds)):
x = conds[t]
if 'area' not in x[1]:
if 'control' in x[1] and x[1]['control'] is not None:
cond_cnets.append(x[1]['control'])
else:
cond_other.append((x, t))
for t in range(len(uncond)):
x = uncond[t]
if 'area' not in x[1]:
if 'control' in x[1] and x[1]['control'] is not None:
uncond_cnets.append(x[1]['control'])
else:
uncond_other.append((x, t))
if len(uncond_cnets) > 0:
return
for x in range(len(cond_cnets)):
temp = uncond_other[x % len(uncond_other)]
o = temp[0]
if 'control' in o[1] and o[1]['control'] is not None:
n = o[1].copy()
n['control'] = cond_cnets[x]
uncond += [[o[0], n]]
else:
n = o[1].copy()
n['control'] = cond_cnets[x]
uncond[temp[1]] = [o[0], n]
def encode_adm(noise_augmentor, conds, batch_size, device):
for t in range(len(conds)):
x = conds[t]
if 'adm' in x[1]:
adm_inputs = []
weights = []
adm_in = x[1]["adm"]
for adm_c in adm_in:
adm_cond = adm_c[0].image_embeds
weight = adm_c[1]
c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([0], device=device))
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
weights.append(weight)
adm_inputs.append(adm_out)
adm_out = torch.stack(adm_inputs).sum(0)
#TODO: Apply Noise to Embedding Mix
else:
adm_out = torch.zeros((1, noise_augmentor.time_embed.dim * 2), device=device)
x[1] = x[1].copy()
x[1]["adm"] = torch.cat([adm_out] * batch_size)
return conds
class KSampler:
SCHEDULERS = ["karras", "normal", "simple", "ddim_uniform"]
SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde",
"dpmpp_2m", "ddim", "uni_pc", "uni_pc_bh2"]
def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
self.model = model
self.model_denoise = CFGNoisePredictor(self.model)
if self.model.parameterization == "v":
self.model_wrap = CompVisVDenoiser(self.model_denoise, quantize=True)
else:
self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model_denoise, quantize=True)
self.model_wrap.parameterization = self.model.parameterization
self.model_k = KSamplerX0Inpaint(self.model_wrap)
self.device = device
if scheduler not in self.SCHEDULERS:
scheduler = self.SCHEDULERS[0]
if sampler not in self.SAMPLERS:
sampler = self.SAMPLERS[0]
self.scheduler = scheduler
self.sampler = sampler
self.sigma_min=float(self.model_wrap.sigma_min)
self.sigma_max=float(self.model_wrap.sigma_max)
self.set_steps(steps, denoise)
self.denoise = denoise
self.model_options = model_options
def _calculate_sigmas(self, steps):
sigmas = None
discard_penultimate_sigma = False
if self.sampler in ['dpm_2', 'dpm_2_ancestral']:
steps += 1
discard_penultimate_sigma = True
if self.scheduler == "karras":
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max, device=self.device)
elif self.scheduler == "normal":
sigmas = self.model_wrap.get_sigmas(steps).to(self.device)
elif self.scheduler == "simple":
sigmas = simple_scheduler(self.model_wrap, steps).to(self.device)
elif self.scheduler == "ddim_uniform":
sigmas = ddim_scheduler(self.model_wrap, steps).to(self.device)
else:
print("error invalid scheduler", self.scheduler)
if discard_penultimate_sigma:
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
return sigmas
def set_steps(self, steps, denoise=None):
self.steps = steps
if denoise is None or denoise > 0.9999:
self.sigmas = self._calculate_sigmas(steps)
else:
new_steps = int(steps/denoise)
sigmas = self._calculate_sigmas(new_steps)
self.sigmas = sigmas[-(steps + 1):]
def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None):
sigmas = self.sigmas
sigma_min = self.sigma_min
if last_step is not None and last_step < (len(sigmas) - 1):
sigma_min = sigmas[last_step]
sigmas = sigmas[:last_step + 1]
if force_full_denoise:
sigmas[-1] = 0
if start_step is not None:
if start_step < (len(sigmas) - 1):
sigmas = sigmas[start_step:]
else:
if latent_image is not None:
return latent_image
else:
return torch.zeros_like(noise)
positive = positive[:]
negative = negative[:]
#make sure each cond area has an opposite one with the same area
for c in positive:
create_cond_with_same_area_if_none(negative, c)
for c in negative:
create_cond_with_same_area_if_none(positive, c)
apply_control_net_to_equal_area(positive, negative)
if self.model.model.diffusion_model.dtype == torch.float16:
precision_scope = torch.autocast
else:
precision_scope = contextlib.nullcontext
if hasattr(self.model, 'noise_augmentor'): #unclip
positive = encode_adm(self.model.noise_augmentor, positive, noise.shape[0], self.device)
negative = encode_adm(self.model.noise_augmentor, negative, noise.shape[0], self.device)
extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options}
cond_concat = None
if hasattr(self.model, 'concat_keys'): #inpaint
cond_concat = []
for ck in self.model.concat_keys:
if denoise_mask is not None:
if ck == "mask":
cond_concat.append(denoise_mask[:,:1])
elif ck == "masked_image":
cond_concat.append(latent_image) #NOTE: the latent_image should be masked by the mask in pixel space
else:
if ck == "mask":
cond_concat.append(torch.ones_like(noise)[:,:1])
elif ck == "masked_image":
cond_concat.append(blank_inpaint_image_like(noise))
extra_args["cond_concat"] = cond_concat
if sigmas[0] != self.sigmas[0] or (self.denoise is not None and self.denoise < 1.0):
max_denoise = False
else:
max_denoise = True
with precision_scope(model_management.get_autocast_device(self.device)):
if self.sampler == "uni_pc":
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask)
elif self.sampler == "uni_pc_bh2":
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, variant='bh2')
elif self.sampler == "ddim":
timesteps = []
for s in range(sigmas.shape[0]):
timesteps.insert(0, self.model_wrap.sigma_to_t(sigmas[s]))
noise_mask = None
if denoise_mask is not None:
noise_mask = 1.0 - denoise_mask
sampler = DDIMSampler(self.model, device=self.device)
sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False)
z_enc = sampler.stochastic_encode(latent_image, torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(self.device), noise=noise, max_denoise=max_denoise)
samples, _ = sampler.sample_custom(ddim_timesteps=timesteps,
conditioning=positive,
batch_size=noise.shape[0],
shape=noise.shape[1:],
verbose=False,
unconditional_guidance_scale=cfg,
unconditional_conditioning=negative,
eta=0.0,
x_T=z_enc,
x0=latent_image,
denoise_function=sampling_function,
extra_args=extra_args,
mask=noise_mask,
to_zero=sigmas[-1]==0,
end_step=sigmas.shape[0] - 1)
else:
extra_args["denoise_mask"] = denoise_mask
self.model_k.latent_image = latent_image
self.model_k.noise = noise
noise = noise * sigmas[0]
if latent_image is not None:
noise += latent_image
if self.sampler == "dpm_fast":
samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], self.steps, extra_args=extra_args)
elif self.sampler == "dpm_adaptive":
samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args)
else:
samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas, extra_args=extra_args)
return samples.to(torch.float32)