554 lines
21 KiB
Python
554 lines
21 KiB
Python
from typing import TYPE_CHECKING, List, Dict, Tuple, Callable
|
|
import enum
|
|
import math
|
|
import torch
|
|
import numpy as np
|
|
|
|
if TYPE_CHECKING:
|
|
from comfy.model_patcher import ModelPatcher
|
|
from comfy.model_base import BaseModel
|
|
from comfy.sd import CLIP
|
|
import comfy.lora
|
|
import comfy.model_management
|
|
from node_helpers import conditioning_set_values
|
|
|
|
class EnumHookMode(enum.Enum):
|
|
MinVram = "minvram"
|
|
MaxSpeed = "maxspeed"
|
|
|
|
class EnumHookType(enum.Enum):
|
|
Weight = "weight"
|
|
Patch = "patch"
|
|
|
|
class EnumWeightTarget(enum.Enum):
|
|
Model = "model"
|
|
Clip = "clip"
|
|
|
|
class _HookRef:
|
|
pass
|
|
|
|
class Hook:
|
|
def __init__(self, hook_type: EnumHookType=None, hook_ref: _HookRef=None,
|
|
hook_keyframe: 'HookKeyframeGroup'=None):
|
|
self.hook_type = hook_type
|
|
self.hook_ref = hook_ref if hook_ref else _HookRef()
|
|
self.hook_keyframe = hook_keyframe if hook_keyframe else HookKeyframeGroup()
|
|
|
|
@property
|
|
def strength(self):
|
|
return self.hook_keyframe.strength
|
|
|
|
def initialize_timesteps(self, model: 'BaseModel'):
|
|
self.reset()
|
|
self.hook_keyframe.initalize_timesteps(model)
|
|
|
|
def reset(self):
|
|
self.hook_keyframe.reset()
|
|
|
|
def clone(self, subtype: Callable=None):
|
|
if subtype is None:
|
|
subtype = type(self)
|
|
c: Hook = subtype()
|
|
c.hook_type = self.hook_type
|
|
c.hook_ref = self.hook_ref
|
|
c.hook_keyframe = self.hook_keyframe
|
|
return c
|
|
|
|
def __eq__(self, other: 'Hook'):
|
|
return self.__class__ == other.__class__ and self.hook_ref == other.hook_ref
|
|
|
|
def __hash__(self):
|
|
return hash(self.hook_ref)
|
|
|
|
|
|
class WeightHook(Hook):
|
|
def __init__(self, strength_model=1.0, strength_clip=1.0):
|
|
super().__init__(hook_type=EnumHookType.Weight)
|
|
self.weights: Dict = None
|
|
self.weights_clip: Dict = None
|
|
self.is_diff = False
|
|
self.need_weight_init = True
|
|
self._strength_model = strength_model
|
|
self._strength_clip = strength_clip
|
|
|
|
@property
|
|
def strength_model(self):
|
|
return self._strength_model * self.strength
|
|
|
|
@property
|
|
def strength_clip(self):
|
|
return self._strength_clip * self.strength
|
|
|
|
def add_hook_patches(self, model: 'ModelPatcher', target: EnumWeightTarget):
|
|
weights = None
|
|
if target == EnumWeightTarget.Model:
|
|
strength = self._strength_model
|
|
else:
|
|
strength = self._strength_clip
|
|
|
|
if self.need_weight_init:
|
|
key_map = {}
|
|
if target == EnumWeightTarget.Model:
|
|
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
|
|
else:
|
|
key_map = comfy.lora.model_lora_keys_clip(model.model, key_map)
|
|
weights = comfy.lora.load_lora(self.weights, key_map, log_missing=False)
|
|
else:
|
|
if target == EnumWeightTarget.Model:
|
|
weights = self.weights
|
|
else:
|
|
weights = self.weights_clip
|
|
k = model.add_hook_patches(hook=self, patches=weights, strength_patch=strength, is_diff=self.is_diff)
|
|
# TODO: add logs about any keys that were not applied
|
|
|
|
def clone(self, subtype: Callable=None):
|
|
if subtype is None:
|
|
subtype = type(self)
|
|
c: WeightHook = super().clone(subtype)
|
|
c.weights = self.weights
|
|
c.weights_clip = self.weights_clip
|
|
c.need_weight_init = self.need_weight_init
|
|
c.is_diff = self.is_diff
|
|
c._strength_model = self._strength_model
|
|
c._strength_clip = self._strength_clip
|
|
return c
|
|
|
|
class PatchHook(Hook):
|
|
def __init__(self):
|
|
super().__init__(hook_type=EnumHookType.Patch)
|
|
self.patches: Dict = None
|
|
|
|
def clone(self, subtype: Callable=None):
|
|
if subtype is None:
|
|
subtype = type(self)
|
|
c: PatchHook = super().clone(type(self))
|
|
c.patches = self.patches
|
|
return c
|
|
|
|
class HookGroup:
|
|
def __init__(self):
|
|
self.hooks: List[Hook] = []
|
|
|
|
def add(self, hook: Hook):
|
|
if hook not in self.hooks:
|
|
self.hooks.append(hook)
|
|
|
|
def contains(self, hook: Hook):
|
|
return hook in self.hooks
|
|
|
|
def clone(self):
|
|
c = HookGroup()
|
|
for hook in self.hooks:
|
|
c.add(hook.clone())
|
|
return c
|
|
|
|
def clone_and_combine(self, other: 'HookGroup'):
|
|
c = self.clone()
|
|
for hook in other.hooks:
|
|
c.add(hook.clone())
|
|
return c
|
|
|
|
def set_keyframes_on_hooks(self, hook_kf: 'HookKeyframeGroup'):
|
|
hook_kf = hook_kf.clone()
|
|
for hook in self.hooks:
|
|
hook.hook_keyframe = hook_kf
|
|
|
|
def get_dict_repr(self):
|
|
d = {}
|
|
for hook in self.hooks:
|
|
d[hook] = None
|
|
return d
|
|
|
|
@staticmethod
|
|
def combine_all_hooks(hooks_list: List['HookGroup'], require_count=1) -> 'HookGroup':
|
|
actual: List[HookGroup] = []
|
|
for group in hooks_list:
|
|
if group is not None:
|
|
actual.append(group)
|
|
if len(actual) < require_count:
|
|
raise Exception(f"Need at least {require_count} hooks to combine, but only had {len(actual)}.")
|
|
# if only 1 hook, just reutnr itself without cloning
|
|
if len(actual) == 1:
|
|
return actual[0]
|
|
final_hook: HookGroup = None
|
|
for hook in actual:
|
|
if final_hook is None:
|
|
final_hook = hook.clone()
|
|
else:
|
|
final_hook = final_hook.clone_and_combine(hook)
|
|
return final_hook
|
|
|
|
|
|
class HookKeyframe:
|
|
def __init__(self, strength: float, start_percent=0.0, guarantee_steps=1):
|
|
self.strength = strength
|
|
# scheduling
|
|
self.start_percent = float(start_percent)
|
|
self.start_t = 999999999.9
|
|
self.guarantee_steps = guarantee_steps
|
|
|
|
def clone(self):
|
|
c = HookKeyframe(strength=self.strength,
|
|
start_percent=self.start_percent, guarantee_steps=self.guarantee_steps)
|
|
c.start_t = self.start_t
|
|
return c
|
|
|
|
class HookKeyframeGroup:
|
|
def __init__(self):
|
|
self.keyframes: List[HookKeyframe] = []
|
|
self._current_keyframe: HookKeyframe = None
|
|
self._current_used_steps = 0
|
|
self._current_index = 0
|
|
self._curr_t = -1.
|
|
|
|
# properties shadow those of HookWeightsKeyframe
|
|
@property
|
|
def strength(self):
|
|
if self._current_keyframe is not None:
|
|
return self._current_keyframe.strength
|
|
return 1.0
|
|
|
|
def reset(self):
|
|
self._current_keyframe = None
|
|
self._current_used_steps = 0
|
|
self._current_index = 0
|
|
self.curr_t = -1.
|
|
self._set_first_as_current()
|
|
|
|
def add(self, keyframe: HookKeyframe):
|
|
# add to end of list, then sort
|
|
self.keyframes.append(keyframe)
|
|
self.keyframes = get_sorted_list_via_attr(self.keyframes, "start_percent")
|
|
self._set_first_as_current()
|
|
|
|
def _set_first_as_current(self):
|
|
if len(self.keyframes) > 0:
|
|
self._current_keyframe = self.keyframes[0]
|
|
else:
|
|
self._current_keyframe = None
|
|
|
|
def has_index(self, index: int):
|
|
return index >= 0 and index < len(self.keyframes)
|
|
|
|
def is_empty(self):
|
|
return len(self.keyframes) == 0
|
|
|
|
def clone(self):
|
|
c = HookKeyframeGroup()
|
|
for keyframe in self.keyframes:
|
|
c.keyframes.append(keyframe)
|
|
c._set_first_as_current()
|
|
return c
|
|
|
|
def initalize_timesteps(self, model: 'BaseModel'):
|
|
for keyframe in self.keyframes:
|
|
keyframe.start_t = model.model_sampling.percent_to_sigma(keyframe.start_percent)
|
|
|
|
def prepare_current_keyframe(self, curr_t: float) -> bool:
|
|
if self.is_empty():
|
|
return False
|
|
if curr_t == self._curr_t:
|
|
return False
|
|
prev_index = self._current_index
|
|
# if met guaranteed steps, look for next keyframe in case need to switch
|
|
if self._current_used_steps >= self._current_keyframe.guarantee_steps:
|
|
# if has next index, loop through and see if need to switch
|
|
if self.has_index(self._current_index+1):
|
|
for i in range(self._current_index+1, len(self.keyframes)):
|
|
eval_c = self.keyframes[i]
|
|
# check if start_t is greater or equal to curr_t
|
|
# NOTE: t is in terms of sigmas, not percent, so bigger number = earlier step in sampling
|
|
if eval_c.start_t >= curr_t:
|
|
self._current_index = i
|
|
self._current_keyframe = eval_c
|
|
self._current_used_steps = 0
|
|
# if guarantee_steps greater than zero, stop searching for other keyframes
|
|
if self._current_keyframe.guarantee_steps > 0:
|
|
break
|
|
# if eval_c is outside the percent range, stop looking further
|
|
else: break
|
|
# update steps current context is used
|
|
self._current_used_steps += 1
|
|
# update current timestep this was performed on
|
|
self._curr_t = curr_t
|
|
# return True if keyframe changed, False if no change
|
|
return prev_index != self._current_index
|
|
|
|
|
|
class InterpolationMethod:
|
|
LINEAR = "linear"
|
|
EASE_IN = "ease_in"
|
|
EASE_OUT = "ease_out"
|
|
EASE_IN_OUT = "ease_in_out"
|
|
|
|
_LIST = [LINEAR, EASE_IN, EASE_OUT, EASE_IN_OUT]
|
|
|
|
@classmethod
|
|
def get_weights(cls, num_from: float, num_to: float, length: int, method: str, reverse=False):
|
|
diff = num_to - num_from
|
|
if method == cls.LINEAR:
|
|
weights = torch.linspace(num_from, num_to, length)
|
|
elif method == cls.EASE_IN:
|
|
index = torch.linspace(0, 1, length)
|
|
weights = diff * np.power(index, 2) + num_from
|
|
elif method == cls.EASE_OUT:
|
|
index = torch.linspace(0, 1, length)
|
|
weights = diff * (1 - np.power(1 - index, 2)) + num_from
|
|
elif method == cls.EASE_IN_OUT:
|
|
index = torch.linspace(0, 1, length)
|
|
weights = diff * ((1 - np.cos(index * np.pi)) / 2) + num_from
|
|
else:
|
|
raise ValueError(f"Unrecognized interpolation method '{method}'.")
|
|
if reverse:
|
|
weights = weights.flip(dims=(0,))
|
|
return weights
|
|
|
|
def get_sorted_list_via_attr(objects: List, attr: str) -> List:
|
|
if not objects:
|
|
return objects
|
|
elif len(objects) <= 1:
|
|
return [x for x in objects]
|
|
# now that we know we have to sort, do it following these rules:
|
|
# a) if objects have same value of attribute, maintain their relative order
|
|
# b) perform sorting of the groups of objects with same attributes
|
|
unique_attrs = {}
|
|
for o in objects:
|
|
val_attr = getattr(o, attr)
|
|
attr_list: List = unique_attrs.get(val_attr, list())
|
|
attr_list.append(o)
|
|
if val_attr not in unique_attrs:
|
|
unique_attrs[val_attr] = attr_list
|
|
# now that we have the unique attr values grouped together in relative order, sort them by key
|
|
sorted_attrs = dict(sorted(unique_attrs.items()))
|
|
# now flatten out the dict into a list to return
|
|
sorted_list = []
|
|
for object_list in sorted_attrs.values():
|
|
sorted_list.extend(object_list)
|
|
return sorted_list
|
|
|
|
def create_hook_lora(lora: Dict[str, torch.Tensor], strength_model: float, strength_clip: float):
|
|
hook_group = HookGroup()
|
|
hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip)
|
|
hook_group.add(hook)
|
|
hook.weights = lora
|
|
return hook_group
|
|
|
|
def create_hook_model_as_lora(weights_model, weights_clip, strength_model: float, strength_clip: float):
|
|
hook_group = HookGroup()
|
|
hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip)
|
|
hook_group.add(hook)
|
|
patches_model = None
|
|
patches_clip = None
|
|
if weights_model is not None:
|
|
patches_model = {}
|
|
for key in weights_model:
|
|
patches_model[key] = ("model_as_lora", (weights_model[key],))
|
|
if weights_clip is not None:
|
|
patches_clip = {}
|
|
for key in weights_clip:
|
|
patches_clip[key] = ("model_as_lora", (weights_clip[key],))
|
|
hook.weights = patches_model
|
|
hook.weights_clip = patches_clip
|
|
hook.need_weight_init = False
|
|
return hook_group
|
|
|
|
def get_patch_weights_from_model(model: 'ModelPatcher', discard_model_sampling=False):
|
|
if model is None:
|
|
return None
|
|
patches_model: Dict[str, torch.Tensor] = model.model.state_dict()
|
|
if discard_model_sampling:
|
|
# do not include ANY model_sampling components of the model that should act as a patch
|
|
for key in list(patches_model.keys()):
|
|
if key.startswith("model_sampling"):
|
|
patches_model.pop(key, None)
|
|
return patches_model
|
|
|
|
def create_hook_model_as_lora_precalc(model: 'ModelPatcher', clip: 'CLIP',
|
|
model_loaded: 'ModelPatcher', clip_loaded: 'CLIP',
|
|
strength_model: float, strength_clip: float):
|
|
hook_group = HookGroup()
|
|
hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip)
|
|
hook_group.add(hook)
|
|
if model is not None and model_loaded is not None:
|
|
expected_model_keys = set(model_loaded.model.state_dict().keys())
|
|
patches_model: Dict[str, torch.Tensor] = model_loaded.model.state_dict()
|
|
# do not include ANY model_sampling components of the model that should act as a patch
|
|
for key in list(patches_model.keys()):
|
|
if key.startswith("model_sampling"):
|
|
expected_model_keys.discard(key)
|
|
patches_model.pop(key, None)
|
|
weights_model, k = model.get_weight_diffs(patches_model)
|
|
else:
|
|
weights_model = {}
|
|
k = ()
|
|
|
|
if clip is not None and clip_loaded is not None:
|
|
expected_clip_keys = clip_loaded.patcher.model.state_dict().copy()
|
|
patches_clip: Dict[str, torch.Tensor] = clip_loaded.cond_stage_model.state_dict()
|
|
weights_clip, k1 = clip.patcher.get_weight_diffs(patches_clip)
|
|
else:
|
|
weights_clip = {}
|
|
k1 = ()
|
|
|
|
k = set(k)
|
|
k1 = set(k1)
|
|
if model is not None and model_loaded is not None:
|
|
for key in expected_model_keys:
|
|
if key not in k:
|
|
print(f"MODEL-AS-LORA NOT LOADED {key}")
|
|
if clip is not None and clip_loaded is not None:
|
|
for key in expected_clip_keys:
|
|
if key not in k1:
|
|
print(f"CLIP-AS-LORA NOT LOADED {key}")
|
|
|
|
hook.weights = weights_model
|
|
hook.weights_clip = weights_clip
|
|
hook.need_weight_init = False
|
|
return hook_group
|
|
|
|
def load_hook_lora_for_models(model: 'ModelPatcher', clip: 'CLIP', lora: Dict[str, torch.Tensor],
|
|
strength_model: float, strength_clip: float):
|
|
key_map = {}
|
|
if model is not None:
|
|
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
|
|
if clip is not None:
|
|
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
|
|
|
|
hook_group = HookGroup()
|
|
hook = WeightHook()
|
|
hook_group.add(hook)
|
|
loaded: Dict[str] = comfy.lora.load_lora(lora, key_map)
|
|
if model is not None:
|
|
new_modelpatcher = model.clone()
|
|
k = new_modelpatcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_model)
|
|
else:
|
|
k = ()
|
|
new_modelpatcher = None
|
|
|
|
if clip is not None:
|
|
new_clip = clip.clone()
|
|
k1 = new_clip.patcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_clip)
|
|
else:
|
|
k1 = ()
|
|
new_clip = None
|
|
k = set(k)
|
|
k1 = set(k1)
|
|
for x in loaded:
|
|
if (x not in k) and (x not in k1):
|
|
print(f"NOT LOADED {x}")
|
|
return (new_modelpatcher, new_clip, hook_group)
|
|
|
|
def load_hook_model_as_lora_for_models(model: 'ModelPatcher', clip: 'CLIP',
|
|
model_loaded: 'ModelPatcher', clip_loaded: 'CLIP',
|
|
strength_model: float, strength_clip: float):
|
|
hook_group = HookGroup()
|
|
hook = WeightHook()
|
|
hook_group.add(hook)
|
|
if model is not None and model_loaded is not None:
|
|
new_modelpatcher = model.clone()
|
|
expected_model_keys = set(model_loaded.model.state_dict().keys())
|
|
patches_model: Dict[str, torch.Tensor] = model_loaded.model.state_dict()
|
|
# do not include ANY model_sampling components of the model that should act as a patch
|
|
for key in list(patches_model.keys()):
|
|
if key.startswith("model_sampling"):
|
|
expected_model_keys.discard(key)
|
|
patches_model.pop(key, None)
|
|
k = new_modelpatcher.add_hook_patches(hook=hook, patches=patches_model, strength_patch=strength_model, is_diff=True)
|
|
else:
|
|
k = ()
|
|
new_modelpatcher = None
|
|
|
|
if clip is not None and clip_loaded is not None:
|
|
new_clip = clip.clone()
|
|
comfy.model_management.unload_model_clones(new_clip.patcher)
|
|
expected_clip_keys = clip_loaded.patcher.model.state_dict().copy()
|
|
patches_clip: Dict[str, torch.Tensor] = clip_loaded.cond_stage_model.state_dict()
|
|
k1 = new_clip.patcher.add_hook_patches(hook=hook, patches=patches_clip, strength_patch=strength_clip, is_diff=True)
|
|
else:
|
|
k1 = ()
|
|
new_clip = None
|
|
|
|
k = set(k)
|
|
k1 = set(k1)
|
|
if model is not None and model_loaded is not None:
|
|
for key in expected_model_keys:
|
|
if key not in k:
|
|
print(f"MODEL-AS-LORA NOT LOADED {key}")
|
|
if clip is not None and clip_loaded is not None:
|
|
for key in expected_clip_keys:
|
|
if key not in k1:
|
|
print(f"CLIP-AS-LORA NOT LOADED {key}")
|
|
|
|
return (new_modelpatcher, new_clip, hook_group)
|
|
|
|
def set_hooks_for_conditioning(cond, hooks: HookGroup):
|
|
if hooks is None:
|
|
return cond
|
|
return conditioning_set_values(cond, {'hooks': hooks})
|
|
|
|
def set_timesteps_for_conditioning(cond, timestep_range: Tuple[float,float]):
|
|
if timestep_range is None:
|
|
return cond
|
|
return conditioning_set_values(cond, {"start_percent": timestep_range[0],
|
|
"end_percent": timestep_range[1]})
|
|
|
|
def set_mask_for_conditioning(cond, mask: torch.Tensor, set_cond_area: str, strength: float):
|
|
if mask is None:
|
|
return cond
|
|
set_area_to_bounds = False
|
|
if set_cond_area != 'default':
|
|
set_area_to_bounds = True
|
|
if len(mask.shape) < 3:
|
|
mask = mask.unsqueeze(0)
|
|
return conditioning_set_values(cond, {'mask': mask,
|
|
'set_area_to_bounds': set_area_to_bounds,
|
|
'mask_strength': strength})
|
|
|
|
def combine_conditioning(conds: List):
|
|
combined_conds = []
|
|
for cond in conds:
|
|
combined_conds.extend(cond)
|
|
return combined_conds
|
|
|
|
def set_mask_conds(conds: List, strength: float, set_cond_area: str,
|
|
opt_mask: torch.Tensor=None, opt_hooks: HookGroup=None, opt_timestep_range: Tuple[float,float]=None):
|
|
masked_conds = []
|
|
for c in conds:
|
|
# first, apply lora_hook to conditioning, if provided
|
|
c = set_hooks_for_conditioning(c, opt_hooks)
|
|
# next, apply mask to conditioning
|
|
c = set_mask_for_conditioning(cond=c, mask=opt_mask, strength=strength, set_cond_area=set_cond_area)
|
|
# apply timesteps, if present
|
|
c = set_timesteps_for_conditioning(cond=c, timestep_range=opt_timestep_range)
|
|
# finally, apply mask to conditioning and store
|
|
masked_conds.append(c)
|
|
return masked_conds
|
|
|
|
def set_mask_and_combine_conds(conds: List, new_conds: List, strength: float=1.0, set_cond_area: str="default",
|
|
opt_mask: torch.Tensor=None, opt_hooks: HookGroup=None, opt_timestep_range: Tuple[float,float]=None):
|
|
combined_conds = []
|
|
for c, masked_c in zip(conds, new_conds):
|
|
# first, apply lora_hook to new conditioning, if provided
|
|
masked_c = set_hooks_for_conditioning(masked_c, opt_hooks)
|
|
# next, apply mask to new conditioning, if provided
|
|
masked_c = set_mask_for_conditioning(cond=masked_c, mask=opt_mask, set_cond_area=set_cond_area, strength=strength)
|
|
# apply timesteps, if present
|
|
masked_c = set_timesteps_for_conditioning(cond=masked_c, timestep_range=opt_timestep_range)
|
|
# finally, combine with existing conditioning and store
|
|
combined_conds.append(combine_conditioning([c, masked_c]))
|
|
return combined_conds
|
|
|
|
def set_default_and_combine_conds(conds: list, new_conds: list,
|
|
opt_hooks: HookGroup=None, opt_timestep_range: Tuple[float,float]=None):
|
|
combined_conds = []
|
|
for c, new_c in zip(conds, new_conds):
|
|
# first, apply lora_hook to new conditioning, if provided
|
|
new_c = set_hooks_for_conditioning(new_c, opt_hooks)
|
|
# next, add default_cond key to cond so that during sampling, it can be identified
|
|
new_c = conditioning_set_values(new_c, {'default': True})
|
|
# apply timesteps, if present
|
|
new_c = set_timesteps_for_conditioning(cond=new_c, timestep_range=opt_timestep_range)
|
|
# finally, combine with existing conditioning and store
|
|
combined_conds.append(combine_conditioning([c, new_c]))
|
|
return combined_conds
|