ComfyUI/comfy/sample.py

58 lines
2.2 KiB
Python

import torch
import comfy.model_management
def prepare_noise(latent_image, seed, skip=0):
"""
creates random noise given a latent image and a seed.
optional arg skip can be used to skip and discard x number of noise generations for a given seed
"""
generator = torch.manual_seed(seed)
for _ in range(skip):
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
return noise
def prepare_mask(noise_mask, noise):
"""ensures noise mask is of proper dimensions"""
device = comfy.model_management.get_torch_device()
noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear")
noise_mask = noise_mask.round()
noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
noise_mask = torch.cat([noise_mask] * noise.shape[0])
noise_mask = noise_mask.to(device)
return noise_mask
def broadcast_cond(cond, noise):
"""broadcasts conditioning to the noise batch size"""
device = comfy.model_management.get_torch_device()
copy = []
for p in cond:
t = p[0]
if t.shape[0] < noise.shape[0]:
t = torch.cat([t] * noise.shape[0])
t = t.to(device)
copy += [[t] + p[1:]]
return copy
def get_models_from_cond(cond, model_type):
models = []
for c in cond:
if model_type in c[1]:
models += [c[1][model_type]]
return models
def load_additional_models(positive, negative):
"""loads additional models in positive and negative conditioning"""
models = []
models += get_models_from_cond(positive, "control")
models += get_models_from_cond(negative, "control")
models += get_models_from_cond(positive, "gligen")
models += get_models_from_cond(negative, "gligen")
comfy.model_management.load_controlnet_gpu(models)
return models
def cleanup_additional_models(models):
"""cleanup additional models that were loaded"""
for m in models:
m.cleanup()