ComfyUI/comfy/ops.py

91 lines
2.8 KiB
Python

import torch
from contextlib import contextmanager
class Linear(torch.nn.Linear):
def reset_parameters(self):
return None
class Conv2d(torch.nn.Conv2d):
def reset_parameters(self):
return None
class Conv3d(torch.nn.Conv3d):
def reset_parameters(self):
return None
class GroupNorm(torch.nn.GroupNorm):
def reset_parameters(self):
return None
class LayerNorm(torch.nn.LayerNorm):
def reset_parameters(self):
return None
def conv_nd(dims, *args, **kwargs):
if dims == 2:
return Conv2d(*args, **kwargs)
elif dims == 3:
return Conv3d(*args, **kwargs)
else:
raise ValueError(f"unsupported dimensions: {dims}")
def cast_bias_weight(s, input):
bias = None
if s.bias is not None:
bias = s.bias.to(device=input.device, dtype=input.dtype)
weight = s.weight.to(device=input.device, dtype=input.dtype)
return weight, bias
class manual_cast:
class Linear(Linear):
def forward(self, input):
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.linear(input, weight, bias)
class Conv2d(Conv2d):
def forward(self, input):
weight, bias = cast_bias_weight(self, input)
return self._conv_forward(input, weight, bias)
class Conv3d(Conv3d):
def forward(self, input):
weight, bias = cast_bias_weight(self, input)
return self._conv_forward(input, weight, bias)
class GroupNorm(GroupNorm):
def forward(self, input):
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
class LayerNorm(LayerNorm):
def forward(self, input):
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
@classmethod
def conv_nd(s, dims, *args, **kwargs):
if dims == 2:
return s.Conv2d(*args, **kwargs)
elif dims == 3:
return s.Conv3d(*args, **kwargs)
else:
raise ValueError(f"unsupported dimensions: {dims}")
@contextmanager
def use_comfy_ops(device=None, dtype=None): # Kind of an ugly hack but I can't think of a better way
old_torch_nn_linear = torch.nn.Linear
force_device = device
force_dtype = dtype
def linear_with_dtype(in_features: int, out_features: int, bias: bool = True, device=None, dtype=None):
if force_device is not None:
device = force_device
if force_dtype is not None:
dtype = force_dtype
return Linear(in_features, out_features, bias=bias, device=device, dtype=dtype)
torch.nn.Linear = linear_with_dtype
try:
yield
finally:
torch.nn.Linear = old_torch_nn_linear