ComfyUI/comfy/supported_models.py

746 lines
25 KiB
Python

import torch
from . import model_base
from . import utils
from . import sd1_clip
from . import sdxl_clip
import comfy.text_encoders.sd2_clip
import comfy.text_encoders.sd3_clip
import comfy.text_encoders.sa_t5
import comfy.text_encoders.aura_t5
import comfy.text_encoders.hydit
import comfy.text_encoders.flux
import comfy.text_encoders.genmo
import comfy.text_encoders.lt
from . import supported_models_base
from . import latent_formats
from . import diffusers_convert
class SD15(supported_models_base.BASE):
unet_config = {
"context_dim": 768,
"model_channels": 320,
"use_linear_in_transformer": False,
"adm_in_channels": None,
"use_temporal_attention": False,
}
unet_extra_config = {
"num_heads": 8,
"num_head_channels": -1,
}
latent_format = latent_formats.SD15
memory_usage_factor = 1.0
def process_clip_state_dict(self, state_dict):
k = list(state_dict.keys())
for x in k:
if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
state_dict[y] = state_dict.pop(x)
if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in state_dict:
ids = state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids']
if ids.dtype == torch.float32:
state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
replace_prefix = {}
replace_prefix["cond_stage_model."] = "clip_l."
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
return state_dict
def process_clip_state_dict_for_saving(self, state_dict):
pop_keys = ["clip_l.transformer.text_projection.weight", "clip_l.logit_scale"]
for p in pop_keys:
if p in state_dict:
state_dict.pop(p)
replace_prefix = {"clip_l.": "cond_stage_model."}
return utils.state_dict_prefix_replace(state_dict, replace_prefix)
def clip_target(self, state_dict={}):
return supported_models_base.ClipTarget(sd1_clip.SD1Tokenizer, sd1_clip.SD1ClipModel)
class SD20(supported_models_base.BASE):
unet_config = {
"context_dim": 1024,
"model_channels": 320,
"use_linear_in_transformer": True,
"adm_in_channels": None,
"use_temporal_attention": False,
}
unet_extra_config = {
"num_heads": -1,
"num_head_channels": 64,
"attn_precision": torch.float32,
}
latent_format = latent_formats.SD15
memory_usage_factor = 1.0
def model_type(self, state_dict, prefix=""):
if self.unet_config["in_channels"] == 4: #SD2.0 inpainting models are not v prediction
k = "{}output_blocks.11.1.transformer_blocks.0.norm1.bias".format(prefix)
out = state_dict.get(k, None)
if out is not None and torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out.
return model_base.ModelType.V_PREDICTION
return model_base.ModelType.EPS
def process_clip_state_dict(self, state_dict):
replace_prefix = {}
replace_prefix["conditioner.embedders.0.model."] = "clip_h." #SD2 in sgm format
replace_prefix["cond_stage_model.model."] = "clip_h."
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
state_dict = utils.clip_text_transformers_convert(state_dict, "clip_h.", "clip_h.transformer.")
return state_dict
def process_clip_state_dict_for_saving(self, state_dict):
replace_prefix = {}
replace_prefix["clip_h"] = "cond_stage_model.model"
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix)
state_dict = diffusers_convert.convert_text_enc_state_dict_v20(state_dict)
return state_dict
def clip_target(self, state_dict={}):
return supported_models_base.ClipTarget(comfy.text_encoders.sd2_clip.SD2Tokenizer, comfy.text_encoders.sd2_clip.SD2ClipModel)
class SD21UnclipL(SD20):
unet_config = {
"context_dim": 1024,
"model_channels": 320,
"use_linear_in_transformer": True,
"adm_in_channels": 1536,
"use_temporal_attention": False,
}
clip_vision_prefix = "embedder.model.visual."
noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 768}
class SD21UnclipH(SD20):
unet_config = {
"context_dim": 1024,
"model_channels": 320,
"use_linear_in_transformer": True,
"adm_in_channels": 2048,
"use_temporal_attention": False,
}
clip_vision_prefix = "embedder.model.visual."
noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1024}
class SDXLRefiner(supported_models_base.BASE):
unet_config = {
"model_channels": 384,
"use_linear_in_transformer": True,
"context_dim": 1280,
"adm_in_channels": 2560,
"transformer_depth": [0, 0, 4, 4, 4, 4, 0, 0],
"use_temporal_attention": False,
}
latent_format = latent_formats.SDXL
memory_usage_factor = 1.0
def get_model(self, state_dict, prefix="", device=None):
return model_base.SDXLRefiner(self, device=device)
def process_clip_state_dict(self, state_dict):
keys_to_replace = {}
replace_prefix = {}
replace_prefix["conditioner.embedders.0.model."] = "clip_g."
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
state_dict = utils.clip_text_transformers_convert(state_dict, "clip_g.", "clip_g.transformer.")
state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace)
return state_dict
def process_clip_state_dict_for_saving(self, state_dict):
replace_prefix = {}
state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g")
if "clip_g.transformer.text_model.embeddings.position_ids" in state_dict_g:
state_dict_g.pop("clip_g.transformer.text_model.embeddings.position_ids")
replace_prefix["clip_g"] = "conditioner.embedders.0.model"
state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix)
return state_dict_g
def clip_target(self, state_dict={}):
return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLRefinerClipModel)
class SDXL(supported_models_base.BASE):
unet_config = {
"model_channels": 320,
"use_linear_in_transformer": True,
"transformer_depth": [0, 0, 2, 2, 10, 10],
"context_dim": 2048,
"adm_in_channels": 2816,
"use_temporal_attention": False,
}
latent_format = latent_formats.SDXL
memory_usage_factor = 0.8
def model_type(self, state_dict, prefix=""):
if 'edm_mean' in state_dict and 'edm_std' in state_dict: #Playground V2.5
self.latent_format = latent_formats.SDXL_Playground_2_5()
self.sampling_settings["sigma_data"] = 0.5
self.sampling_settings["sigma_max"] = 80.0
self.sampling_settings["sigma_min"] = 0.002
return model_base.ModelType.EDM
elif "edm_vpred.sigma_max" in state_dict:
self.sampling_settings["sigma_max"] = float(state_dict["edm_vpred.sigma_max"].item())
if "edm_vpred.sigma_min" in state_dict:
self.sampling_settings["sigma_min"] = float(state_dict["edm_vpred.sigma_min"].item())
return model_base.ModelType.V_PREDICTION_EDM
elif "v_pred" in state_dict:
if "ztsnr" in state_dict: #Some zsnr anime checkpoints
self.sampling_settings["zsnr"] = True
return model_base.ModelType.V_PREDICTION
else:
return model_base.ModelType.EPS
def get_model(self, state_dict, prefix="", device=None):
out = model_base.SDXL(self, model_type=self.model_type(state_dict, prefix), device=device)
if self.inpaint_model():
out.set_inpaint()
return out
def process_clip_state_dict(self, state_dict):
keys_to_replace = {}
replace_prefix = {}
replace_prefix["conditioner.embedders.0.transformer.text_model"] = "clip_l.transformer.text_model"
replace_prefix["conditioner.embedders.1.model."] = "clip_g."
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace)
state_dict = utils.clip_text_transformers_convert(state_dict, "clip_g.", "clip_g.transformer.")
return state_dict
def process_clip_state_dict_for_saving(self, state_dict):
replace_prefix = {}
keys_to_replace = {}
state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g")
for k in state_dict:
if k.startswith("clip_l"):
state_dict_g[k] = state_dict[k]
state_dict_g["clip_l.transformer.text_model.embeddings.position_ids"] = torch.arange(77).expand((1, -1))
pop_keys = ["clip_l.transformer.text_projection.weight", "clip_l.logit_scale"]
for p in pop_keys:
if p in state_dict_g:
state_dict_g.pop(p)
replace_prefix["clip_g"] = "conditioner.embedders.1.model"
replace_prefix["clip_l"] = "conditioner.embedders.0"
state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix)
return state_dict_g
def clip_target(self, state_dict={}):
return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLClipModel)
class SSD1B(SDXL):
unet_config = {
"model_channels": 320,
"use_linear_in_transformer": True,
"transformer_depth": [0, 0, 2, 2, 4, 4],
"context_dim": 2048,
"adm_in_channels": 2816,
"use_temporal_attention": False,
}
class Segmind_Vega(SDXL):
unet_config = {
"model_channels": 320,
"use_linear_in_transformer": True,
"transformer_depth": [0, 0, 1, 1, 2, 2],
"context_dim": 2048,
"adm_in_channels": 2816,
"use_temporal_attention": False,
}
class KOALA_700M(SDXL):
unet_config = {
"model_channels": 320,
"use_linear_in_transformer": True,
"transformer_depth": [0, 2, 5],
"context_dim": 2048,
"adm_in_channels": 2816,
"use_temporal_attention": False,
}
class KOALA_1B(SDXL):
unet_config = {
"model_channels": 320,
"use_linear_in_transformer": True,
"transformer_depth": [0, 2, 6],
"context_dim": 2048,
"adm_in_channels": 2816,
"use_temporal_attention": False,
}
class SVD_img2vid(supported_models_base.BASE):
unet_config = {
"model_channels": 320,
"in_channels": 8,
"use_linear_in_transformer": True,
"transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0],
"context_dim": 1024,
"adm_in_channels": 768,
"use_temporal_attention": True,
"use_temporal_resblock": True
}
unet_extra_config = {
"num_heads": -1,
"num_head_channels": 64,
"attn_precision": torch.float32,
}
clip_vision_prefix = "conditioner.embedders.0.open_clip.model.visual."
latent_format = latent_formats.SD15
sampling_settings = {"sigma_max": 700.0, "sigma_min": 0.002}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.SVD_img2vid(self, device=device)
return out
def clip_target(self, state_dict={}):
return None
class SV3D_u(SVD_img2vid):
unet_config = {
"model_channels": 320,
"in_channels": 8,
"use_linear_in_transformer": True,
"transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0],
"context_dim": 1024,
"adm_in_channels": 256,
"use_temporal_attention": True,
"use_temporal_resblock": True
}
vae_key_prefix = ["conditioner.embedders.1.encoder."]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.SV3D_u(self, device=device)
return out
class SV3D_p(SV3D_u):
unet_config = {
"model_channels": 320,
"in_channels": 8,
"use_linear_in_transformer": True,
"transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0],
"context_dim": 1024,
"adm_in_channels": 1280,
"use_temporal_attention": True,
"use_temporal_resblock": True
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.SV3D_p(self, device=device)
return out
class Stable_Zero123(supported_models_base.BASE):
unet_config = {
"context_dim": 768,
"model_channels": 320,
"use_linear_in_transformer": False,
"adm_in_channels": None,
"use_temporal_attention": False,
"in_channels": 8,
}
unet_extra_config = {
"num_heads": 8,
"num_head_channels": -1,
}
required_keys = {
"cc_projection.weight": None,
"cc_projection.bias": None,
}
clip_vision_prefix = "cond_stage_model.model.visual."
latent_format = latent_formats.SD15
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Stable_Zero123(self, device=device, cc_projection_weight=state_dict["cc_projection.weight"], cc_projection_bias=state_dict["cc_projection.bias"])
return out
def clip_target(self, state_dict={}):
return None
class SD_X4Upscaler(SD20):
unet_config = {
"context_dim": 1024,
"model_channels": 256,
'in_channels': 7,
"use_linear_in_transformer": True,
"adm_in_channels": None,
"use_temporal_attention": False,
}
unet_extra_config = {
"disable_self_attentions": [True, True, True, False],
"num_classes": 1000,
"num_heads": 8,
"num_head_channels": -1,
}
latent_format = latent_formats.SD_X4
sampling_settings = {
"linear_start": 0.0001,
"linear_end": 0.02,
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.SD_X4Upscaler(self, device=device)
return out
class Stable_Cascade_C(supported_models_base.BASE):
unet_config = {
"stable_cascade_stage": 'c',
}
unet_extra_config = {}
latent_format = latent_formats.SC_Prior
supported_inference_dtypes = [torch.bfloat16, torch.float32]
sampling_settings = {
"shift": 2.0,
}
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoder."]
clip_vision_prefix = "clip_l_vision."
def process_unet_state_dict(self, state_dict):
key_list = list(state_dict.keys())
for y in ["weight", "bias"]:
suffix = "in_proj_{}".format(y)
keys = filter(lambda a: a.endswith(suffix), key_list)
for k_from in keys:
weights = state_dict.pop(k_from)
prefix = k_from[:-(len(suffix) + 1)]
shape_from = weights.shape[0] // 3
for x in range(3):
p = ["to_q", "to_k", "to_v"]
k_to = "{}.{}.{}".format(prefix, p[x], y)
state_dict[k_to] = weights[shape_from*x:shape_from*(x + 1)]
return state_dict
def process_clip_state_dict(self, state_dict):
state_dict = utils.state_dict_prefix_replace(state_dict, {k: "" for k in self.text_encoder_key_prefix}, filter_keys=True)
if "clip_g.text_projection" in state_dict:
state_dict["clip_g.transformer.text_projection.weight"] = state_dict.pop("clip_g.text_projection").transpose(0, 1)
return state_dict
def get_model(self, state_dict, prefix="", device=None):
out = model_base.StableCascade_C(self, device=device)
return out
def clip_target(self, state_dict={}):
return supported_models_base.ClipTarget(sdxl_clip.StableCascadeTokenizer, sdxl_clip.StableCascadeClipModel)
class Stable_Cascade_B(Stable_Cascade_C):
unet_config = {
"stable_cascade_stage": 'b',
}
unet_extra_config = {}
latent_format = latent_formats.SC_B
supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]
sampling_settings = {
"shift": 1.0,
}
clip_vision_prefix = None
def get_model(self, state_dict, prefix="", device=None):
out = model_base.StableCascade_B(self, device=device)
return out
class SD15_instructpix2pix(SD15):
unet_config = {
"context_dim": 768,
"model_channels": 320,
"use_linear_in_transformer": False,
"adm_in_channels": None,
"use_temporal_attention": False,
"in_channels": 8,
}
def get_model(self, state_dict, prefix="", device=None):
return model_base.SD15_instructpix2pix(self, device=device)
class SDXL_instructpix2pix(SDXL):
unet_config = {
"model_channels": 320,
"use_linear_in_transformer": True,
"transformer_depth": [0, 0, 2, 2, 10, 10],
"context_dim": 2048,
"adm_in_channels": 2816,
"use_temporal_attention": False,
"in_channels": 8,
}
def get_model(self, state_dict, prefix="", device=None):
return model_base.SDXL_instructpix2pix(self, model_type=self.model_type(state_dict, prefix), device=device)
class SD3(supported_models_base.BASE):
unet_config = {
"in_channels": 16,
"pos_embed_scaling_factor": None,
}
sampling_settings = {
"shift": 3.0,
}
unet_extra_config = {}
latent_format = latent_formats.SD3
memory_usage_factor = 1.2
text_encoder_key_prefix = ["text_encoders."]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.SD3(self, device=device)
return out
def clip_target(self, state_dict={}):
clip_l = False
clip_g = False
t5 = False
dtype_t5 = None
pref = self.text_encoder_key_prefix[0]
if "{}clip_l.transformer.text_model.final_layer_norm.weight".format(pref) in state_dict:
clip_l = True
if "{}clip_g.transformer.text_model.final_layer_norm.weight".format(pref) in state_dict:
clip_g = True
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
if "dtype_t5" in t5_detect:
t5 = True
return supported_models_base.ClipTarget(comfy.text_encoders.sd3_clip.SD3Tokenizer, comfy.text_encoders.sd3_clip.sd3_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, **t5_detect))
class StableAudio(supported_models_base.BASE):
unet_config = {
"audio_model": "dit1.0",
}
sampling_settings = {"sigma_max": 500.0, "sigma_min": 0.03}
unet_extra_config = {}
latent_format = latent_formats.StableAudio1
text_encoder_key_prefix = ["text_encoders."]
vae_key_prefix = ["pretransform.model."]
def get_model(self, state_dict, prefix="", device=None):
seconds_start_sd = utils.state_dict_prefix_replace(state_dict, {"conditioner.conditioners.seconds_start.": ""}, filter_keys=True)
seconds_total_sd = utils.state_dict_prefix_replace(state_dict, {"conditioner.conditioners.seconds_total.": ""}, filter_keys=True)
return model_base.StableAudio1(self, seconds_start_embedder_weights=seconds_start_sd, seconds_total_embedder_weights=seconds_total_sd, device=device)
def process_unet_state_dict(self, state_dict):
for k in list(state_dict.keys()):
if k.endswith(".cross_attend_norm.beta") or k.endswith(".ff_norm.beta") or k.endswith(".pre_norm.beta"): #These weights are all zero
state_dict.pop(k)
return state_dict
def process_unet_state_dict_for_saving(self, state_dict):
replace_prefix = {"": "model.model."}
return utils.state_dict_prefix_replace(state_dict, replace_prefix)
def clip_target(self, state_dict={}):
return supported_models_base.ClipTarget(comfy.text_encoders.sa_t5.SAT5Tokenizer, comfy.text_encoders.sa_t5.SAT5Model)
class AuraFlow(supported_models_base.BASE):
unet_config = {
"cond_seq_dim": 2048,
}
sampling_settings = {
"multiplier": 1.0,
"shift": 1.73,
}
unet_extra_config = {}
latent_format = latent_formats.SDXL
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.AuraFlow(self, device=device)
return out
def clip_target(self, state_dict={}):
return supported_models_base.ClipTarget(comfy.text_encoders.aura_t5.AuraT5Tokenizer, comfy.text_encoders.aura_t5.AuraT5Model)
class HunyuanDiT(supported_models_base.BASE):
unet_config = {
"image_model": "hydit",
}
unet_extra_config = {
"attn_precision": torch.float32,
}
sampling_settings = {
"linear_start": 0.00085,
"linear_end": 0.018,
}
latent_format = latent_formats.SDXL
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.HunyuanDiT(self, device=device)
return out
def clip_target(self, state_dict={}):
return supported_models_base.ClipTarget(comfy.text_encoders.hydit.HyditTokenizer, comfy.text_encoders.hydit.HyditModel)
class HunyuanDiT1(HunyuanDiT):
unet_config = {
"image_model": "hydit1",
}
unet_extra_config = {}
sampling_settings = {
"linear_start" : 0.00085,
"linear_end" : 0.03,
}
class Flux(supported_models_base.BASE):
unet_config = {
"image_model": "flux",
"guidance_embed": True,
}
sampling_settings = {
}
unet_extra_config = {}
latent_format = latent_formats.Flux
memory_usage_factor = 2.8
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Flux(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.flux.FluxTokenizer, comfy.text_encoders.flux.flux_clip(**t5_detect))
class FluxInpaint(Flux):
unet_config = {
"image_model": "flux",
"guidance_embed": True,
"in_channels": 96,
}
supported_inference_dtypes = [torch.bfloat16, torch.float32]
class FluxSchnell(Flux):
unet_config = {
"image_model": "flux",
"guidance_embed": False,
}
sampling_settings = {
"multiplier": 1.0,
"shift": 1.0,
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Flux(self, model_type=model_base.ModelType.FLOW, device=device)
return out
class GenmoMochi(supported_models_base.BASE):
unet_config = {
"image_model": "mochi_preview",
}
sampling_settings = {
"multiplier": 1.0,
"shift": 6.0,
}
unet_extra_config = {}
latent_format = latent_formats.Mochi
memory_usage_factor = 2.0 #TODO
supported_inference_dtypes = [torch.bfloat16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.GenmoMochi(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.genmo.MochiT5Tokenizer, comfy.text_encoders.genmo.mochi_te(**t5_detect))
class LTXV(supported_models_base.BASE):
unet_config = {
"image_model": "ltxv",
}
sampling_settings = {
"shift": 2.37,
}
unet_extra_config = {}
latent_format = latent_formats.LTXV
memory_usage_factor = 2.7
supported_inference_dtypes = [torch.bfloat16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.LTXV(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.lt.LTXVT5Tokenizer, comfy.text_encoders.lt.ltxv_te(**t5_detect))
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV]
models += [SVD_img2vid]