88 lines
3.2 KiB
Python
88 lines
3.2 KiB
Python
import folder_paths
|
|
import comfy.sd
|
|
import comfy.model_management
|
|
import nodes
|
|
import torch
|
|
|
|
class TripleCLIPLoader:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"), ), "clip_name2": (folder_paths.get_filename_list("clip"), ), "clip_name3": (folder_paths.get_filename_list("clip"), )
|
|
}}
|
|
RETURN_TYPES = ("CLIP",)
|
|
FUNCTION = "load_clip"
|
|
|
|
CATEGORY = "advanced/loaders"
|
|
|
|
def load_clip(self, clip_name1, clip_name2, clip_name3):
|
|
clip_path1 = folder_paths.get_full_path("clip", clip_name1)
|
|
clip_path2 = folder_paths.get_full_path("clip", clip_name2)
|
|
clip_path3 = folder_paths.get_full_path("clip", clip_name3)
|
|
clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2, clip_path3], embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
|
return (clip,)
|
|
|
|
class EmptySD3LatentImage:
|
|
def __init__(self):
|
|
self.device = comfy.model_management.intermediate_device()
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "width": ("INT", {"default": 512, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
|
"height": ("INT", {"default": 512, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "generate"
|
|
|
|
CATEGORY = "latent/sd3"
|
|
|
|
def generate(self, width, height, batch_size=1):
|
|
latent = torch.ones([batch_size, 16, height // 8, width // 8], device=self.device) * 0.0609
|
|
return ({"samples":latent}, )
|
|
|
|
class CLIPTextEncodeSD3:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"clip": ("CLIP", ),
|
|
"clip_l": ("STRING", {"multiline": True, "dynamicPrompts": True}),
|
|
"clip_g": ("STRING", {"multiline": True, "dynamicPrompts": True}),
|
|
"t5xxl": ("STRING", {"multiline": True, "dynamicPrompts": True}),
|
|
"empty_padding": (["none", "empty_prompt"], )
|
|
}}
|
|
RETURN_TYPES = ("CONDITIONING",)
|
|
FUNCTION = "encode"
|
|
|
|
CATEGORY = "advanced/conditioning"
|
|
|
|
def encode(self, clip, clip_l, clip_g, t5xxl, empty_padding):
|
|
no_padding = empty_padding == "none"
|
|
|
|
tokens = clip.tokenize(clip_g)
|
|
if len(clip_g) == 0 and no_padding:
|
|
tokens["g"] = []
|
|
|
|
if len(clip_l) == 0 and no_padding:
|
|
tokens["l"] = []
|
|
else:
|
|
tokens["l"] = clip.tokenize(clip_l)["l"]
|
|
|
|
if len(t5xxl) == 0 and no_padding:
|
|
tokens["t5xxl"] = []
|
|
else:
|
|
tokens["t5xxl"] = clip.tokenize(t5xxl)["t5xxl"]
|
|
if len(tokens["l"]) != len(tokens["g"]):
|
|
empty = clip.tokenize("")
|
|
while len(tokens["l"]) < len(tokens["g"]):
|
|
tokens["l"] += empty["l"]
|
|
while len(tokens["l"]) > len(tokens["g"]):
|
|
tokens["g"] += empty["g"]
|
|
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
|
|
return ([[cond, {"pooled_output": pooled}]], )
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"TripleCLIPLoader": TripleCLIPLoader,
|
|
"EmptySD3LatentImage": EmptySD3LatentImage,
|
|
"CLIPTextEncodeSD3": CLIPTextEncodeSD3,
|
|
}
|