ComfyUI/comfy/ldm/modules/attention.py

769 lines
27 KiB
Python

from inspect import isfunction
import math
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from typing import Optional, Any
from functools import partial
from .diffusionmodules.util import checkpoint, AlphaBlender, timestep_embedding
from .sub_quadratic_attention import efficient_dot_product_attention
from comfy import model_management
if model_management.xformers_enabled():
import xformers
import xformers.ops
from comfy.cli_args import args
import comfy.ops
# CrossAttn precision handling
if args.dont_upcast_attention:
print("disabling upcasting of attention")
_ATTN_PRECISION = "fp16"
else:
_ATTN_PRECISION = "fp32"
def exists(val):
return val is not None
def uniq(arr):
return{el: True for el in arr}.keys()
def default(val, d):
if exists(val):
return val
return d
def max_neg_value(t):
return -torch.finfo(t.dtype).max
def init_(tensor):
dim = tensor.shape[-1]
std = 1 / math.sqrt(dim)
tensor.uniform_(-std, std)
return tensor
# feedforward
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=comfy.ops):
super().__init__()
self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * F.gelu(gate)
class FeedForward(nn.Module):
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=comfy.ops):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
project_in = nn.Sequential(
operations.Linear(dim, inner_dim, dtype=dtype, device=device),
nn.GELU()
) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations)
self.net = nn.Sequential(
project_in,
nn.Dropout(dropout),
operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
)
def forward(self, x):
return self.net(x)
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
def Normalize(in_channels, dtype=None, device=None):
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
def attention_basic(q, k, v, heads, mask=None):
b, _, dim_head = q.shape
dim_head //= heads
scale = dim_head ** -0.5
h = heads
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, -1, heads, dim_head)
.permute(0, 2, 1, 3)
.reshape(b * heads, -1, dim_head)
.contiguous(),
(q, k, v),
)
# force cast to fp32 to avoid overflowing
if _ATTN_PRECISION =="fp32":
with torch.autocast(enabled=False, device_type = 'cuda'):
q, k = q.float(), k.float()
sim = einsum('b i d, b j d -> b i j', q, k) * scale
else:
sim = einsum('b i d, b j d -> b i j', q, k) * scale
del q, k
if exists(mask):
mask = rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
# attention, what we cannot get enough of
sim = sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
out = (
out.unsqueeze(0)
.reshape(b, heads, -1, dim_head)
.permute(0, 2, 1, 3)
.reshape(b, -1, heads * dim_head)
)
return out
def attention_sub_quad(query, key, value, heads, mask=None):
b, _, dim_head = query.shape
dim_head //= heads
scale = dim_head ** -0.5
query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1)
dtype = query.dtype
upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32
if upcast_attention:
bytes_per_token = torch.finfo(torch.float32).bits//8
else:
bytes_per_token = torch.finfo(query.dtype).bits//8
batch_x_heads, q_tokens, _ = query.shape
_, _, k_tokens = key.shape
qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
kv_chunk_size_min = None
kv_chunk_size = None
query_chunk_size = None
for x in [4096, 2048, 1024, 512, 256]:
count = mem_free_total / (batch_x_heads * bytes_per_token * x * 4.0)
if count >= k_tokens:
kv_chunk_size = k_tokens
query_chunk_size = x
break
if query_chunk_size is None:
query_chunk_size = 512
hidden_states = efficient_dot_product_attention(
query,
key,
value,
query_chunk_size=query_chunk_size,
kv_chunk_size=kv_chunk_size,
kv_chunk_size_min=kv_chunk_size_min,
use_checkpoint=False,
upcast_attention=upcast_attention,
)
hidden_states = hidden_states.to(dtype)
hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2)
return hidden_states
def attention_split(q, k, v, heads, mask=None):
b, _, dim_head = q.shape
dim_head //= heads
scale = dim_head ** -0.5
h = heads
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, -1, heads, dim_head)
.permute(0, 2, 1, 3)
.reshape(b * heads, -1, dim_head)
.contiguous(),
(q, k, v),
)
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
mem_free_total = model_management.get_free_memory(q.device)
if _ATTN_PRECISION =="fp32":
element_size = 4
else:
element_size = q.element_size()
gb = 1024 ** 3
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * element_size
modifier = 3
mem_required = tensor_size * modifier
steps = 1
if mem_required > mem_free_total:
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
if steps > 64:
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')
# print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
first_op_done = False
cleared_cache = False
while True:
try:
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
if _ATTN_PRECISION =="fp32":
with torch.autocast(enabled=False, device_type = 'cuda'):
s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale
else:
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale
s2 = s1.softmax(dim=-1).to(v.dtype)
del s1
first_op_done = True
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
del s2
break
except model_management.OOM_EXCEPTION as e:
if first_op_done == False:
model_management.soft_empty_cache(True)
if cleared_cache == False:
cleared_cache = True
print("out of memory error, emptying cache and trying again")
continue
steps *= 2
if steps > 64:
raise e
print("out of memory error, increasing steps and trying again", steps)
else:
raise e
del q, k, v
r1 = (
r1.unsqueeze(0)
.reshape(b, heads, -1, dim_head)
.permute(0, 2, 1, 3)
.reshape(b, -1, heads * dim_head)
)
return r1
BROKEN_XFORMERS = False
try:
x_vers = xformers.__version__
#I think 0.0.23 is also broken (q with bs bigger than 65535 gives CUDA error)
BROKEN_XFORMERS = x_vers.startswith("0.0.21") or x_vers.startswith("0.0.22") or x_vers.startswith("0.0.23")
except:
pass
def attention_xformers(q, k, v, heads, mask=None):
b, _, dim_head = q.shape
dim_head //= heads
if BROKEN_XFORMERS:
if b * heads > 65535:
return attention_pytorch(q, k, v, heads, mask)
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, -1, heads, dim_head)
.permute(0, 2, 1, 3)
.reshape(b * heads, -1, dim_head)
.contiguous(),
(q, k, v),
)
# actually compute the attention, what we cannot get enough of
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
if exists(mask):
raise NotImplementedError
out = (
out.unsqueeze(0)
.reshape(b, heads, -1, dim_head)
.permute(0, 2, 1, 3)
.reshape(b, -1, heads * dim_head)
)
return out
def attention_pytorch(q, k, v, heads, mask=None):
b, _, dim_head = q.shape
dim_head //= heads
q, k, v = map(
lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
(q, k, v),
)
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
out = (
out.transpose(1, 2).reshape(b, -1, heads * dim_head)
)
return out
optimized_attention = attention_basic
optimized_attention_masked = attention_basic
if model_management.xformers_enabled():
print("Using xformers cross attention")
optimized_attention = attention_xformers
elif model_management.pytorch_attention_enabled():
print("Using pytorch cross attention")
optimized_attention = attention_pytorch
else:
if args.use_split_cross_attention:
print("Using split optimization for cross attention")
optimized_attention = attention_split
else:
print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
optimized_attention = attention_sub_quad
if model_management.pytorch_attention_enabled():
optimized_attention_masked = attention_pytorch
class CrossAttention(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.heads = heads
self.dim_head = dim_head
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
def forward(self, x, context=None, value=None, mask=None):
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
if value is not None:
v = self.to_v(value)
del value
else:
v = self.to_v(context)
if mask is None:
out = optimized_attention(q, k, v, self.heads)
else:
out = optimized_attention_masked(q, k, v, self.heads, mask)
return self.to_out(out)
class BasicTransformerBlock(nn.Module):
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, ff_in=False, inner_dim=None,
disable_self_attn=False, disable_temporal_crossattention=False, switch_temporal_ca_to_sa=False, dtype=None, device=None, operations=comfy.ops):
super().__init__()
self.ff_in = ff_in or inner_dim is not None
if inner_dim is None:
inner_dim = dim
self.is_res = inner_dim == dim
if self.ff_in:
self.norm_in = nn.LayerNorm(dim, dtype=dtype, device=device)
self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)
self.disable_self_attn = disable_self_attn
self.attn1 = CrossAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout,
context_dim=context_dim if self.disable_self_attn else None, dtype=dtype, device=device, operations=operations) # is a self-attention if not self.disable_self_attn
self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)
if disable_temporal_crossattention:
if switch_temporal_ca_to_sa:
raise ValueError
else:
self.attn2 = None
else:
context_dim_attn2 = None
if not switch_temporal_ca_to_sa:
context_dim_attn2 = context_dim
self.attn2 = CrossAttention(query_dim=inner_dim, context_dim=context_dim_attn2,
heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype, device=device, operations=operations) # is self-attn if context is none
self.norm2 = nn.LayerNorm(inner_dim, dtype=dtype, device=device)
self.norm1 = nn.LayerNorm(inner_dim, dtype=dtype, device=device)
self.norm3 = nn.LayerNorm(inner_dim, dtype=dtype, device=device)
self.checkpoint = checkpoint
self.n_heads = n_heads
self.d_head = d_head
self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa
def forward(self, x, context=None, transformer_options={}):
return checkpoint(self._forward, (x, context, transformer_options), self.parameters(), self.checkpoint)
def _forward(self, x, context=None, transformer_options={}):
extra_options = {}
block = transformer_options.get("block", None)
block_index = transformer_options.get("block_index", 0)
transformer_patches = {}
transformer_patches_replace = {}
for k in transformer_options:
if k == "patches":
transformer_patches = transformer_options[k]
elif k == "patches_replace":
transformer_patches_replace = transformer_options[k]
else:
extra_options[k] = transformer_options[k]
extra_options["n_heads"] = self.n_heads
extra_options["dim_head"] = self.d_head
if self.ff_in:
x_skip = x
x = self.ff_in(self.norm_in(x))
if self.is_res:
x += x_skip
n = self.norm1(x)
if self.disable_self_attn:
context_attn1 = context
else:
context_attn1 = None
value_attn1 = None
if "attn1_patch" in transformer_patches:
patch = transformer_patches["attn1_patch"]
if context_attn1 is None:
context_attn1 = n
value_attn1 = context_attn1
for p in patch:
n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options)
if block is not None:
transformer_block = (block[0], block[1], block_index)
else:
transformer_block = None
attn1_replace_patch = transformer_patches_replace.get("attn1", {})
block_attn1 = transformer_block
if block_attn1 not in attn1_replace_patch:
block_attn1 = block
if block_attn1 in attn1_replace_patch:
if context_attn1 is None:
context_attn1 = n
value_attn1 = n
n = self.attn1.to_q(n)
context_attn1 = self.attn1.to_k(context_attn1)
value_attn1 = self.attn1.to_v(value_attn1)
n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
n = self.attn1.to_out(n)
else:
n = self.attn1(n, context=context_attn1, value=value_attn1)
if "attn1_output_patch" in transformer_patches:
patch = transformer_patches["attn1_output_patch"]
for p in patch:
n = p(n, extra_options)
x += n
if "middle_patch" in transformer_patches:
patch = transformer_patches["middle_patch"]
for p in patch:
x = p(x, extra_options)
if self.attn2 is not None:
n = self.norm2(x)
if self.switch_temporal_ca_to_sa:
context_attn2 = n
else:
context_attn2 = context
value_attn2 = None
if "attn2_patch" in transformer_patches:
patch = transformer_patches["attn2_patch"]
value_attn2 = context_attn2
for p in patch:
n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options)
attn2_replace_patch = transformer_patches_replace.get("attn2", {})
block_attn2 = transformer_block
if block_attn2 not in attn2_replace_patch:
block_attn2 = block
if block_attn2 in attn2_replace_patch:
if value_attn2 is None:
value_attn2 = context_attn2
n = self.attn2.to_q(n)
context_attn2 = self.attn2.to_k(context_attn2)
value_attn2 = self.attn2.to_v(value_attn2)
n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
n = self.attn2.to_out(n)
else:
n = self.attn2(n, context=context_attn2, value=value_attn2)
if "attn2_output_patch" in transformer_patches:
patch = transformer_patches["attn2_output_patch"]
for p in patch:
n = p(n, extra_options)
x += n
if self.is_res:
x_skip = x
x = self.ff(self.norm3(x))
if self.is_res:
x += x_skip
return x
class SpatialTransformer(nn.Module):
"""
Transformer block for image-like data.
First, project the input (aka embedding)
and reshape to b, t, d.
Then apply standard transformer action.
Finally, reshape to image
NEW: use_linear for more efficiency instead of the 1x1 convs
"""
def __init__(self, in_channels, n_heads, d_head,
depth=1, dropout=0., context_dim=None,
disable_self_attn=False, use_linear=False,
use_checkpoint=True, dtype=None, device=None, operations=comfy.ops):
super().__init__()
if exists(context_dim) and not isinstance(context_dim, list):
context_dim = [context_dim] * depth
self.in_channels = in_channels
inner_dim = n_heads * d_head
self.norm = Normalize(in_channels, dtype=dtype, device=device)
if not use_linear:
self.proj_in = operations.Conv2d(in_channels,
inner_dim,
kernel_size=1,
stride=1,
padding=0, dtype=dtype, device=device)
else:
self.proj_in = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
self.transformer_blocks = nn.ModuleList(
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, dtype=dtype, device=device, operations=operations)
for d in range(depth)]
)
if not use_linear:
self.proj_out = operations.Conv2d(inner_dim,in_channels,
kernel_size=1,
stride=1,
padding=0, dtype=dtype, device=device)
else:
self.proj_out = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
self.use_linear = use_linear
def forward(self, x, context=None, transformer_options={}):
# note: if no context is given, cross-attention defaults to self-attention
if not isinstance(context, list):
context = [context] * len(self.transformer_blocks)
b, c, h, w = x.shape
x_in = x
x = self.norm(x)
if not self.use_linear:
x = self.proj_in(x)
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
if self.use_linear:
x = self.proj_in(x)
for i, block in enumerate(self.transformer_blocks):
transformer_options["block_index"] = i
x = block(x, context=context[i], transformer_options=transformer_options)
if self.use_linear:
x = self.proj_out(x)
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
if not self.use_linear:
x = self.proj_out(x)
return x + x_in
class SpatialVideoTransformer(SpatialTransformer):
def __init__(
self,
in_channels,
n_heads,
d_head,
depth=1,
dropout=0.0,
use_linear=False,
context_dim=None,
use_spatial_context=False,
timesteps=None,
merge_strategy: str = "fixed",
merge_factor: float = 0.5,
time_context_dim=None,
ff_in=False,
checkpoint=False,
time_depth=1,
disable_self_attn=False,
disable_temporal_crossattention=False,
max_time_embed_period: int = 10000,
dtype=None, device=None, operations=comfy.ops
):
super().__init__(
in_channels,
n_heads,
d_head,
depth=depth,
dropout=dropout,
use_checkpoint=checkpoint,
context_dim=context_dim,
use_linear=use_linear,
disable_self_attn=disable_self_attn,
dtype=dtype, device=device, operations=operations
)
self.time_depth = time_depth
self.depth = depth
self.max_time_embed_period = max_time_embed_period
time_mix_d_head = d_head
n_time_mix_heads = n_heads
time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads)
inner_dim = n_heads * d_head
if use_spatial_context:
time_context_dim = context_dim
self.time_stack = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
n_time_mix_heads,
time_mix_d_head,
dropout=dropout,
context_dim=time_context_dim,
# timesteps=timesteps,
checkpoint=checkpoint,
ff_in=ff_in,
inner_dim=time_mix_inner_dim,
disable_self_attn=disable_self_attn,
disable_temporal_crossattention=disable_temporal_crossattention,
dtype=dtype, device=device, operations=operations
)
for _ in range(self.depth)
]
)
assert len(self.time_stack) == len(self.transformer_blocks)
self.use_spatial_context = use_spatial_context
self.in_channels = in_channels
time_embed_dim = self.in_channels * 4
self.time_pos_embed = nn.Sequential(
operations.Linear(self.in_channels, time_embed_dim, dtype=dtype, device=device),
nn.SiLU(),
operations.Linear(time_embed_dim, self.in_channels, dtype=dtype, device=device),
)
self.time_mixer = AlphaBlender(
alpha=merge_factor, merge_strategy=merge_strategy
)
def forward(
self,
x: torch.Tensor,
context: Optional[torch.Tensor] = None,
time_context: Optional[torch.Tensor] = None,
timesteps: Optional[int] = None,
image_only_indicator: Optional[torch.Tensor] = None,
transformer_options={}
) -> torch.Tensor:
_, _, h, w = x.shape
x_in = x
spatial_context = None
if exists(context):
spatial_context = context
if self.use_spatial_context:
assert (
context.ndim == 3
), f"n dims of spatial context should be 3 but are {context.ndim}"
if time_context is None:
time_context = context
time_context_first_timestep = time_context[::timesteps]
time_context = repeat(
time_context_first_timestep, "b ... -> (b n) ...", n=h * w
)
elif time_context is not None and not self.use_spatial_context:
time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w)
if time_context.ndim == 2:
time_context = rearrange(time_context, "b c -> b 1 c")
x = self.norm(x)
if not self.use_linear:
x = self.proj_in(x)
x = rearrange(x, "b c h w -> b (h w) c")
if self.use_linear:
x = self.proj_in(x)
num_frames = torch.arange(timesteps, device=x.device)
num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
num_frames = rearrange(num_frames, "b t -> (b t)")
t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False, max_period=self.max_time_embed_period).to(x.dtype)
emb = self.time_pos_embed(t_emb)
emb = emb[:, None, :]
for it_, (block, mix_block) in enumerate(
zip(self.transformer_blocks, self.time_stack)
):
transformer_options["block_index"] = it_
x = block(
x,
context=spatial_context,
transformer_options=transformer_options,
)
x_mix = x
x_mix = x_mix + emb
B, S, C = x_mix.shape
x_mix = rearrange(x_mix, "(b t) s c -> (b s) t c", t=timesteps)
x_mix = mix_block(x_mix, context=time_context) #TODO: transformer_options
x_mix = rearrange(
x_mix, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps
)
x = self.time_mixer(x_spatial=x, x_temporal=x_mix, image_only_indicator=image_only_indicator)
if self.use_linear:
x = self.proj_out(x)
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
if not self.use_linear:
x = self.proj_out(x)
out = x + x_in
return out