110 lines
3.1 KiB
Python
110 lines
3.1 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from .base_model import BaseModel
|
|
from .blocks import (
|
|
FeatureFusionBlock,
|
|
FeatureFusionBlock_custom,
|
|
Interpolate,
|
|
_make_encoder,
|
|
forward_vit,
|
|
)
|
|
|
|
|
|
def _make_fusion_block(features, use_bn):
|
|
return FeatureFusionBlock_custom(
|
|
features,
|
|
nn.ReLU(False),
|
|
deconv=False,
|
|
bn=use_bn,
|
|
expand=False,
|
|
align_corners=True,
|
|
)
|
|
|
|
|
|
class DPT(BaseModel):
|
|
def __init__(
|
|
self,
|
|
head,
|
|
features=256,
|
|
backbone="vitb_rn50_384",
|
|
readout="project",
|
|
channels_last=False,
|
|
use_bn=False,
|
|
):
|
|
|
|
super(DPT, self).__init__()
|
|
|
|
self.channels_last = channels_last
|
|
|
|
hooks = {
|
|
"vitb_rn50_384": [0, 1, 8, 11],
|
|
"vitb16_384": [2, 5, 8, 11],
|
|
"vitl16_384": [5, 11, 17, 23],
|
|
}
|
|
|
|
# Instantiate backbone and reassemble blocks
|
|
self.pretrained, self.scratch = _make_encoder(
|
|
backbone,
|
|
features,
|
|
False, # Set to true of you want to train from scratch, uses ImageNet weights
|
|
groups=1,
|
|
expand=False,
|
|
exportable=False,
|
|
hooks=hooks[backbone],
|
|
use_readout=readout,
|
|
)
|
|
|
|
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
|
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
|
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
|
|
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
|
|
|
self.scratch.output_conv = head
|
|
|
|
|
|
def forward(self, x):
|
|
if self.channels_last == True:
|
|
x.contiguous(memory_format=torch.channels_last)
|
|
|
|
layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
|
|
|
|
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
|
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
|
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
|
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
|
|
|
path_4 = self.scratch.refinenet4(layer_4_rn)
|
|
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
|
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
|
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
|
|
|
out = self.scratch.output_conv(path_1)
|
|
|
|
return out
|
|
|
|
|
|
class DPTDepthModel(DPT):
|
|
def __init__(self, path=None, non_negative=True, **kwargs):
|
|
features = kwargs["features"] if "features" in kwargs else 256
|
|
|
|
head = nn.Sequential(
|
|
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
|
|
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
|
|
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
|
|
nn.ReLU(True),
|
|
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
|
nn.ReLU(True) if non_negative else nn.Identity(),
|
|
nn.Identity(),
|
|
)
|
|
|
|
super().__init__(head, **kwargs)
|
|
|
|
if path is not None:
|
|
self.load(path)
|
|
|
|
def forward(self, x):
|
|
return super().forward(x).squeeze(dim=1)
|
|
|