915 lines
36 KiB
Python
915 lines
36 KiB
Python
from abc import abstractmethod
|
|
|
|
import torch as th
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from einops import rearrange
|
|
import logging
|
|
|
|
from .util import (
|
|
checkpoint,
|
|
avg_pool_nd,
|
|
zero_module,
|
|
timestep_embedding,
|
|
AlphaBlender,
|
|
)
|
|
from ..attention import SpatialTransformer, SpatialVideoTransformer, default
|
|
from comfy.ldm.util import exists
|
|
import comfy.patcher_extension
|
|
import comfy.ops
|
|
ops = comfy.ops.disable_weight_init
|
|
|
|
class TimestepBlock(nn.Module):
|
|
"""
|
|
Any module where forward() takes timestep embeddings as a second argument.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def forward(self, x, emb):
|
|
"""
|
|
Apply the module to `x` given `emb` timestep embeddings.
|
|
"""
|
|
|
|
#This is needed because accelerate makes a copy of transformer_options which breaks "transformer_index"
|
|
def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, output_shape=None, time_context=None, num_video_frames=None, image_only_indicator=None):
|
|
for layer in ts:
|
|
if isinstance(layer, VideoResBlock):
|
|
x = layer(x, emb, num_video_frames, image_only_indicator)
|
|
elif isinstance(layer, TimestepBlock):
|
|
x = layer(x, emb)
|
|
elif isinstance(layer, SpatialVideoTransformer):
|
|
x = layer(x, context, time_context, num_video_frames, image_only_indicator, transformer_options)
|
|
if "transformer_index" in transformer_options:
|
|
transformer_options["transformer_index"] += 1
|
|
elif isinstance(layer, SpatialTransformer):
|
|
x = layer(x, context, transformer_options)
|
|
if "transformer_index" in transformer_options:
|
|
transformer_options["transformer_index"] += 1
|
|
elif isinstance(layer, Upsample):
|
|
x = layer(x, output_shape=output_shape)
|
|
else:
|
|
if "patches" in transformer_options and "forward_timestep_embed_patch" in transformer_options["patches"]:
|
|
found_patched = False
|
|
for class_type, handler in transformer_options["patches"]["forward_timestep_embed_patch"]:
|
|
if isinstance(layer, class_type):
|
|
x = handler(layer, x, emb, context, transformer_options, output_shape, time_context, num_video_frames, image_only_indicator)
|
|
found_patched = True
|
|
break
|
|
if found_patched:
|
|
continue
|
|
x = layer(x)
|
|
return x
|
|
|
|
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
|
"""
|
|
A sequential module that passes timestep embeddings to the children that
|
|
support it as an extra input.
|
|
"""
|
|
|
|
def forward(self, *args, **kwargs):
|
|
return forward_timestep_embed(self, *args, **kwargs)
|
|
|
|
class Upsample(nn.Module):
|
|
"""
|
|
An upsampling layer with an optional convolution.
|
|
:param channels: channels in the inputs and outputs.
|
|
:param use_conv: a bool determining if a convolution is applied.
|
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
|
upsampling occurs in the inner-two dimensions.
|
|
"""
|
|
|
|
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.out_channels = out_channels or channels
|
|
self.use_conv = use_conv
|
|
self.dims = dims
|
|
if use_conv:
|
|
self.conv = operations.conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device)
|
|
|
|
def forward(self, x, output_shape=None):
|
|
assert x.shape[1] == self.channels
|
|
if self.dims == 3:
|
|
shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2]
|
|
if output_shape is not None:
|
|
shape[1] = output_shape[3]
|
|
shape[2] = output_shape[4]
|
|
else:
|
|
shape = [x.shape[2] * 2, x.shape[3] * 2]
|
|
if output_shape is not None:
|
|
shape[0] = output_shape[2]
|
|
shape[1] = output_shape[3]
|
|
|
|
x = F.interpolate(x, size=shape, mode="nearest")
|
|
if self.use_conv:
|
|
x = self.conv(x)
|
|
return x
|
|
|
|
class Downsample(nn.Module):
|
|
"""
|
|
A downsampling layer with an optional convolution.
|
|
:param channels: channels in the inputs and outputs.
|
|
:param use_conv: a bool determining if a convolution is applied.
|
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
|
downsampling occurs in the inner-two dimensions.
|
|
"""
|
|
|
|
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.out_channels = out_channels or channels
|
|
self.use_conv = use_conv
|
|
self.dims = dims
|
|
stride = 2 if dims != 3 else (1, 2, 2)
|
|
if use_conv:
|
|
self.op = operations.conv_nd(
|
|
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, dtype=dtype, device=device
|
|
)
|
|
else:
|
|
assert self.channels == self.out_channels
|
|
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
|
|
|
def forward(self, x):
|
|
assert x.shape[1] == self.channels
|
|
return self.op(x)
|
|
|
|
|
|
class ResBlock(TimestepBlock):
|
|
"""
|
|
A residual block that can optionally change the number of channels.
|
|
:param channels: the number of input channels.
|
|
:param emb_channels: the number of timestep embedding channels.
|
|
:param dropout: the rate of dropout.
|
|
:param out_channels: if specified, the number of out channels.
|
|
:param use_conv: if True and out_channels is specified, use a spatial
|
|
convolution instead of a smaller 1x1 convolution to change the
|
|
channels in the skip connection.
|
|
:param dims: determines if the signal is 1D, 2D, or 3D.
|
|
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
|
:param up: if True, use this block for upsampling.
|
|
:param down: if True, use this block for downsampling.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
channels,
|
|
emb_channels,
|
|
dropout,
|
|
out_channels=None,
|
|
use_conv=False,
|
|
use_scale_shift_norm=False,
|
|
dims=2,
|
|
use_checkpoint=False,
|
|
up=False,
|
|
down=False,
|
|
kernel_size=3,
|
|
exchange_temb_dims=False,
|
|
skip_t_emb=False,
|
|
dtype=None,
|
|
device=None,
|
|
operations=ops
|
|
):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.emb_channels = emb_channels
|
|
self.dropout = dropout
|
|
self.out_channels = out_channels or channels
|
|
self.use_conv = use_conv
|
|
self.use_checkpoint = use_checkpoint
|
|
self.use_scale_shift_norm = use_scale_shift_norm
|
|
self.exchange_temb_dims = exchange_temb_dims
|
|
|
|
if isinstance(kernel_size, list):
|
|
padding = [k // 2 for k in kernel_size]
|
|
else:
|
|
padding = kernel_size // 2
|
|
|
|
self.in_layers = nn.Sequential(
|
|
operations.GroupNorm(32, channels, dtype=dtype, device=device),
|
|
nn.SiLU(),
|
|
operations.conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device),
|
|
)
|
|
|
|
self.updown = up or down
|
|
|
|
if up:
|
|
self.h_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
|
|
self.x_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
|
|
elif down:
|
|
self.h_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
|
|
self.x_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
|
|
else:
|
|
self.h_upd = self.x_upd = nn.Identity()
|
|
|
|
self.skip_t_emb = skip_t_emb
|
|
if self.skip_t_emb:
|
|
self.emb_layers = None
|
|
self.exchange_temb_dims = False
|
|
else:
|
|
self.emb_layers = nn.Sequential(
|
|
nn.SiLU(),
|
|
operations.Linear(
|
|
emb_channels,
|
|
2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device
|
|
),
|
|
)
|
|
self.out_layers = nn.Sequential(
|
|
operations.GroupNorm(32, self.out_channels, dtype=dtype, device=device),
|
|
nn.SiLU(),
|
|
nn.Dropout(p=dropout),
|
|
operations.conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device)
|
|
,
|
|
)
|
|
|
|
if self.out_channels == channels:
|
|
self.skip_connection = nn.Identity()
|
|
elif use_conv:
|
|
self.skip_connection = operations.conv_nd(
|
|
dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device
|
|
)
|
|
else:
|
|
self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device)
|
|
|
|
def forward(self, x, emb):
|
|
"""
|
|
Apply the block to a Tensor, conditioned on a timestep embedding.
|
|
:param x: an [N x C x ...] Tensor of features.
|
|
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
|
:return: an [N x C x ...] Tensor of outputs.
|
|
"""
|
|
return checkpoint(
|
|
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
|
)
|
|
|
|
|
|
def _forward(self, x, emb):
|
|
if self.updown:
|
|
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
|
h = in_rest(x)
|
|
h = self.h_upd(h)
|
|
x = self.x_upd(x)
|
|
h = in_conv(h)
|
|
else:
|
|
h = self.in_layers(x)
|
|
|
|
emb_out = None
|
|
if not self.skip_t_emb:
|
|
emb_out = self.emb_layers(emb).type(h.dtype)
|
|
while len(emb_out.shape) < len(h.shape):
|
|
emb_out = emb_out[..., None]
|
|
if self.use_scale_shift_norm:
|
|
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
|
h = out_norm(h)
|
|
if emb_out is not None:
|
|
scale, shift = th.chunk(emb_out, 2, dim=1)
|
|
h *= (1 + scale)
|
|
h += shift
|
|
h = out_rest(h)
|
|
else:
|
|
if emb_out is not None:
|
|
if self.exchange_temb_dims:
|
|
emb_out = emb_out.movedim(1, 2)
|
|
h = h + emb_out
|
|
h = self.out_layers(h)
|
|
return self.skip_connection(x) + h
|
|
|
|
|
|
class VideoResBlock(ResBlock):
|
|
def __init__(
|
|
self,
|
|
channels: int,
|
|
emb_channels: int,
|
|
dropout: float,
|
|
video_kernel_size=3,
|
|
merge_strategy: str = "fixed",
|
|
merge_factor: float = 0.5,
|
|
out_channels=None,
|
|
use_conv: bool = False,
|
|
use_scale_shift_norm: bool = False,
|
|
dims: int = 2,
|
|
use_checkpoint: bool = False,
|
|
up: bool = False,
|
|
down: bool = False,
|
|
dtype=None,
|
|
device=None,
|
|
operations=ops
|
|
):
|
|
super().__init__(
|
|
channels,
|
|
emb_channels,
|
|
dropout,
|
|
out_channels=out_channels,
|
|
use_conv=use_conv,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
dims=dims,
|
|
use_checkpoint=use_checkpoint,
|
|
up=up,
|
|
down=down,
|
|
dtype=dtype,
|
|
device=device,
|
|
operations=operations
|
|
)
|
|
|
|
self.time_stack = ResBlock(
|
|
default(out_channels, channels),
|
|
emb_channels,
|
|
dropout=dropout,
|
|
dims=3,
|
|
out_channels=default(out_channels, channels),
|
|
use_scale_shift_norm=False,
|
|
use_conv=False,
|
|
up=False,
|
|
down=False,
|
|
kernel_size=video_kernel_size,
|
|
use_checkpoint=use_checkpoint,
|
|
exchange_temb_dims=True,
|
|
dtype=dtype,
|
|
device=device,
|
|
operations=operations
|
|
)
|
|
self.time_mixer = AlphaBlender(
|
|
alpha=merge_factor,
|
|
merge_strategy=merge_strategy,
|
|
rearrange_pattern="b t -> b 1 t 1 1",
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
x: th.Tensor,
|
|
emb: th.Tensor,
|
|
num_video_frames: int,
|
|
image_only_indicator = None,
|
|
) -> th.Tensor:
|
|
x = super().forward(x, emb)
|
|
|
|
x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)
|
|
x = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)
|
|
|
|
x = self.time_stack(
|
|
x, rearrange(emb, "(b t) ... -> b t ...", t=num_video_frames)
|
|
)
|
|
x = self.time_mixer(
|
|
x_spatial=x_mix, x_temporal=x, image_only_indicator=image_only_indicator
|
|
)
|
|
x = rearrange(x, "b c t h w -> (b t) c h w")
|
|
return x
|
|
|
|
|
|
class Timestep(nn.Module):
|
|
def __init__(self, dim):
|
|
super().__init__()
|
|
self.dim = dim
|
|
|
|
def forward(self, t):
|
|
return timestep_embedding(t, self.dim)
|
|
|
|
def apply_control(h, control, name):
|
|
if control is not None and name in control and len(control[name]) > 0:
|
|
ctrl = control[name].pop()
|
|
if ctrl is not None:
|
|
try:
|
|
h += ctrl
|
|
except:
|
|
logging.warning("warning control could not be applied {} {}".format(h.shape, ctrl.shape))
|
|
return h
|
|
|
|
class UNetModel(nn.Module):
|
|
"""
|
|
The full UNet model with attention and timestep embedding.
|
|
:param in_channels: channels in the input Tensor.
|
|
:param model_channels: base channel count for the model.
|
|
:param out_channels: channels in the output Tensor.
|
|
:param num_res_blocks: number of residual blocks per downsample.
|
|
:param dropout: the dropout probability.
|
|
:param channel_mult: channel multiplier for each level of the UNet.
|
|
:param conv_resample: if True, use learned convolutions for upsampling and
|
|
downsampling.
|
|
:param dims: determines if the signal is 1D, 2D, or 3D.
|
|
:param num_classes: if specified (as an int), then this model will be
|
|
class-conditional with `num_classes` classes.
|
|
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
|
:param num_heads: the number of attention heads in each attention layer.
|
|
:param num_heads_channels: if specified, ignore num_heads and instead use
|
|
a fixed channel width per attention head.
|
|
:param num_heads_upsample: works with num_heads to set a different number
|
|
of heads for upsampling. Deprecated.
|
|
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
|
:param resblock_updown: use residual blocks for up/downsampling.
|
|
:param use_new_attention_order: use a different attention pattern for potentially
|
|
increased efficiency.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
image_size,
|
|
in_channels,
|
|
model_channels,
|
|
out_channels,
|
|
num_res_blocks,
|
|
dropout=0,
|
|
channel_mult=(1, 2, 4, 8),
|
|
conv_resample=True,
|
|
dims=2,
|
|
num_classes=None,
|
|
use_checkpoint=False,
|
|
dtype=th.float32,
|
|
num_heads=-1,
|
|
num_head_channels=-1,
|
|
num_heads_upsample=-1,
|
|
use_scale_shift_norm=False,
|
|
resblock_updown=False,
|
|
use_new_attention_order=False,
|
|
use_spatial_transformer=False, # custom transformer support
|
|
transformer_depth=1, # custom transformer support
|
|
context_dim=None, # custom transformer support
|
|
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
|
legacy=True,
|
|
disable_self_attentions=None,
|
|
num_attention_blocks=None,
|
|
disable_middle_self_attn=False,
|
|
use_linear_in_transformer=False,
|
|
adm_in_channels=None,
|
|
transformer_depth_middle=None,
|
|
transformer_depth_output=None,
|
|
use_temporal_resblock=False,
|
|
use_temporal_attention=False,
|
|
time_context_dim=None,
|
|
extra_ff_mix_layer=False,
|
|
use_spatial_context=False,
|
|
merge_strategy=None,
|
|
merge_factor=0.0,
|
|
video_kernel_size=None,
|
|
disable_temporal_crossattention=False,
|
|
max_ddpm_temb_period=10000,
|
|
attn_precision=None,
|
|
device=None,
|
|
operations=ops,
|
|
):
|
|
super().__init__()
|
|
|
|
if context_dim is not None:
|
|
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
|
# from omegaconf.listconfig import ListConfig
|
|
# if type(context_dim) == ListConfig:
|
|
# context_dim = list(context_dim)
|
|
|
|
if num_heads_upsample == -1:
|
|
num_heads_upsample = num_heads
|
|
|
|
if num_heads == -1:
|
|
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
|
|
|
if num_head_channels == -1:
|
|
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
|
|
|
self.in_channels = in_channels
|
|
self.model_channels = model_channels
|
|
self.out_channels = out_channels
|
|
|
|
if isinstance(num_res_blocks, int):
|
|
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
|
else:
|
|
if len(num_res_blocks) != len(channel_mult):
|
|
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
|
"as a list/tuple (per-level) with the same length as channel_mult")
|
|
self.num_res_blocks = num_res_blocks
|
|
|
|
if disable_self_attentions is not None:
|
|
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
|
assert len(disable_self_attentions) == len(channel_mult)
|
|
if num_attention_blocks is not None:
|
|
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
|
|
|
transformer_depth = transformer_depth[:]
|
|
transformer_depth_output = transformer_depth_output[:]
|
|
|
|
self.dropout = dropout
|
|
self.channel_mult = channel_mult
|
|
self.conv_resample = conv_resample
|
|
self.num_classes = num_classes
|
|
self.use_checkpoint = use_checkpoint
|
|
self.dtype = dtype
|
|
self.num_heads = num_heads
|
|
self.num_head_channels = num_head_channels
|
|
self.num_heads_upsample = num_heads_upsample
|
|
self.use_temporal_resblocks = use_temporal_resblock
|
|
self.predict_codebook_ids = n_embed is not None
|
|
|
|
self.default_num_video_frames = None
|
|
|
|
time_embed_dim = model_channels * 4
|
|
self.time_embed = nn.Sequential(
|
|
operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
|
|
nn.SiLU(),
|
|
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
|
)
|
|
|
|
if self.num_classes is not None:
|
|
if isinstance(self.num_classes, int):
|
|
self.label_emb = nn.Embedding(num_classes, time_embed_dim, dtype=self.dtype, device=device)
|
|
elif self.num_classes == "continuous":
|
|
logging.debug("setting up linear c_adm embedding layer")
|
|
self.label_emb = nn.Linear(1, time_embed_dim)
|
|
elif self.num_classes == "sequential":
|
|
assert adm_in_channels is not None
|
|
self.label_emb = nn.Sequential(
|
|
nn.Sequential(
|
|
operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
|
|
nn.SiLU(),
|
|
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
|
)
|
|
)
|
|
else:
|
|
raise ValueError()
|
|
|
|
self.input_blocks = nn.ModuleList(
|
|
[
|
|
TimestepEmbedSequential(
|
|
operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
|
)
|
|
]
|
|
)
|
|
self._feature_size = model_channels
|
|
input_block_chans = [model_channels]
|
|
ch = model_channels
|
|
ds = 1
|
|
|
|
def get_attention_layer(
|
|
ch,
|
|
num_heads,
|
|
dim_head,
|
|
depth=1,
|
|
context_dim=None,
|
|
use_checkpoint=False,
|
|
disable_self_attn=False,
|
|
):
|
|
if use_temporal_attention:
|
|
return SpatialVideoTransformer(
|
|
ch,
|
|
num_heads,
|
|
dim_head,
|
|
depth=depth,
|
|
context_dim=context_dim,
|
|
time_context_dim=time_context_dim,
|
|
dropout=dropout,
|
|
ff_in=extra_ff_mix_layer,
|
|
use_spatial_context=use_spatial_context,
|
|
merge_strategy=merge_strategy,
|
|
merge_factor=merge_factor,
|
|
checkpoint=use_checkpoint,
|
|
use_linear=use_linear_in_transformer,
|
|
disable_self_attn=disable_self_attn,
|
|
disable_temporal_crossattention=disable_temporal_crossattention,
|
|
max_time_embed_period=max_ddpm_temb_period,
|
|
attn_precision=attn_precision,
|
|
dtype=self.dtype, device=device, operations=operations
|
|
)
|
|
else:
|
|
return SpatialTransformer(
|
|
ch, num_heads, dim_head, depth=depth, context_dim=context_dim,
|
|
disable_self_attn=disable_self_attn, use_linear=use_linear_in_transformer,
|
|
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
|
|
)
|
|
|
|
def get_resblock(
|
|
merge_factor,
|
|
merge_strategy,
|
|
video_kernel_size,
|
|
ch,
|
|
time_embed_dim,
|
|
dropout,
|
|
out_channels,
|
|
dims,
|
|
use_checkpoint,
|
|
use_scale_shift_norm,
|
|
down=False,
|
|
up=False,
|
|
dtype=None,
|
|
device=None,
|
|
operations=ops
|
|
):
|
|
if self.use_temporal_resblocks:
|
|
return VideoResBlock(
|
|
merge_factor=merge_factor,
|
|
merge_strategy=merge_strategy,
|
|
video_kernel_size=video_kernel_size,
|
|
channels=ch,
|
|
emb_channels=time_embed_dim,
|
|
dropout=dropout,
|
|
out_channels=out_channels,
|
|
dims=dims,
|
|
use_checkpoint=use_checkpoint,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
down=down,
|
|
up=up,
|
|
dtype=dtype,
|
|
device=device,
|
|
operations=operations
|
|
)
|
|
else:
|
|
return ResBlock(
|
|
channels=ch,
|
|
emb_channels=time_embed_dim,
|
|
dropout=dropout,
|
|
out_channels=out_channels,
|
|
use_checkpoint=use_checkpoint,
|
|
dims=dims,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
down=down,
|
|
up=up,
|
|
dtype=dtype,
|
|
device=device,
|
|
operations=operations
|
|
)
|
|
|
|
for level, mult in enumerate(channel_mult):
|
|
for nr in range(self.num_res_blocks[level]):
|
|
layers = [
|
|
get_resblock(
|
|
merge_factor=merge_factor,
|
|
merge_strategy=merge_strategy,
|
|
video_kernel_size=video_kernel_size,
|
|
ch=ch,
|
|
time_embed_dim=time_embed_dim,
|
|
dropout=dropout,
|
|
out_channels=mult * model_channels,
|
|
dims=dims,
|
|
use_checkpoint=use_checkpoint,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
dtype=self.dtype,
|
|
device=device,
|
|
operations=operations,
|
|
)
|
|
]
|
|
ch = mult * model_channels
|
|
num_transformers = transformer_depth.pop(0)
|
|
if num_transformers > 0:
|
|
if num_head_channels == -1:
|
|
dim_head = ch // num_heads
|
|
else:
|
|
num_heads = ch // num_head_channels
|
|
dim_head = num_head_channels
|
|
if legacy:
|
|
#num_heads = 1
|
|
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
|
if exists(disable_self_attentions):
|
|
disabled_sa = disable_self_attentions[level]
|
|
else:
|
|
disabled_sa = False
|
|
|
|
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
|
layers.append(get_attention_layer(
|
|
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
|
disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint)
|
|
)
|
|
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
|
self._feature_size += ch
|
|
input_block_chans.append(ch)
|
|
if level != len(channel_mult) - 1:
|
|
out_ch = ch
|
|
self.input_blocks.append(
|
|
TimestepEmbedSequential(
|
|
get_resblock(
|
|
merge_factor=merge_factor,
|
|
merge_strategy=merge_strategy,
|
|
video_kernel_size=video_kernel_size,
|
|
ch=ch,
|
|
time_embed_dim=time_embed_dim,
|
|
dropout=dropout,
|
|
out_channels=out_ch,
|
|
dims=dims,
|
|
use_checkpoint=use_checkpoint,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
down=True,
|
|
dtype=self.dtype,
|
|
device=device,
|
|
operations=operations
|
|
)
|
|
if resblock_updown
|
|
else Downsample(
|
|
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
|
|
)
|
|
)
|
|
)
|
|
ch = out_ch
|
|
input_block_chans.append(ch)
|
|
ds *= 2
|
|
self._feature_size += ch
|
|
|
|
if num_head_channels == -1:
|
|
dim_head = ch // num_heads
|
|
else:
|
|
num_heads = ch // num_head_channels
|
|
dim_head = num_head_channels
|
|
if legacy:
|
|
#num_heads = 1
|
|
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
|
mid_block = [
|
|
get_resblock(
|
|
merge_factor=merge_factor,
|
|
merge_strategy=merge_strategy,
|
|
video_kernel_size=video_kernel_size,
|
|
ch=ch,
|
|
time_embed_dim=time_embed_dim,
|
|
dropout=dropout,
|
|
out_channels=None,
|
|
dims=dims,
|
|
use_checkpoint=use_checkpoint,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
dtype=self.dtype,
|
|
device=device,
|
|
operations=operations
|
|
)]
|
|
|
|
self.middle_block = None
|
|
if transformer_depth_middle >= -1:
|
|
if transformer_depth_middle >= 0:
|
|
mid_block += [get_attention_layer( # always uses a self-attn
|
|
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
|
disable_self_attn=disable_middle_self_attn, use_checkpoint=use_checkpoint
|
|
),
|
|
get_resblock(
|
|
merge_factor=merge_factor,
|
|
merge_strategy=merge_strategy,
|
|
video_kernel_size=video_kernel_size,
|
|
ch=ch,
|
|
time_embed_dim=time_embed_dim,
|
|
dropout=dropout,
|
|
out_channels=None,
|
|
dims=dims,
|
|
use_checkpoint=use_checkpoint,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
dtype=self.dtype,
|
|
device=device,
|
|
operations=operations
|
|
)]
|
|
self.middle_block = TimestepEmbedSequential(*mid_block)
|
|
self._feature_size += ch
|
|
|
|
self.output_blocks = nn.ModuleList([])
|
|
for level, mult in list(enumerate(channel_mult))[::-1]:
|
|
for i in range(self.num_res_blocks[level] + 1):
|
|
ich = input_block_chans.pop()
|
|
layers = [
|
|
get_resblock(
|
|
merge_factor=merge_factor,
|
|
merge_strategy=merge_strategy,
|
|
video_kernel_size=video_kernel_size,
|
|
ch=ch + ich,
|
|
time_embed_dim=time_embed_dim,
|
|
dropout=dropout,
|
|
out_channels=model_channels * mult,
|
|
dims=dims,
|
|
use_checkpoint=use_checkpoint,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
dtype=self.dtype,
|
|
device=device,
|
|
operations=operations
|
|
)
|
|
]
|
|
ch = model_channels * mult
|
|
num_transformers = transformer_depth_output.pop()
|
|
if num_transformers > 0:
|
|
if num_head_channels == -1:
|
|
dim_head = ch // num_heads
|
|
else:
|
|
num_heads = ch // num_head_channels
|
|
dim_head = num_head_channels
|
|
if legacy:
|
|
#num_heads = 1
|
|
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
|
if exists(disable_self_attentions):
|
|
disabled_sa = disable_self_attentions[level]
|
|
else:
|
|
disabled_sa = False
|
|
|
|
if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
|
|
layers.append(
|
|
get_attention_layer(
|
|
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
|
disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint
|
|
)
|
|
)
|
|
if level and i == self.num_res_blocks[level]:
|
|
out_ch = ch
|
|
layers.append(
|
|
get_resblock(
|
|
merge_factor=merge_factor,
|
|
merge_strategy=merge_strategy,
|
|
video_kernel_size=video_kernel_size,
|
|
ch=ch,
|
|
time_embed_dim=time_embed_dim,
|
|
dropout=dropout,
|
|
out_channels=out_ch,
|
|
dims=dims,
|
|
use_checkpoint=use_checkpoint,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
up=True,
|
|
dtype=self.dtype,
|
|
device=device,
|
|
operations=operations
|
|
)
|
|
if resblock_updown
|
|
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations)
|
|
)
|
|
ds //= 2
|
|
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
|
self._feature_size += ch
|
|
|
|
self.out = nn.Sequential(
|
|
operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
|
|
nn.SiLU(),
|
|
operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device),
|
|
)
|
|
if self.predict_codebook_ids:
|
|
self.id_predictor = nn.Sequential(
|
|
operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
|
|
operations.conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device),
|
|
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
|
)
|
|
|
|
def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
|
|
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
|
self._forward,
|
|
self,
|
|
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
|
|
).execute(x, timesteps, context, y, control, transformer_options, **kwargs)
|
|
|
|
def _forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
|
|
"""
|
|
Apply the model to an input batch.
|
|
:param x: an [N x C x ...] Tensor of inputs.
|
|
:param timesteps: a 1-D batch of timesteps.
|
|
:param context: conditioning plugged in via crossattn
|
|
:param y: an [N] Tensor of labels, if class-conditional.
|
|
:return: an [N x C x ...] Tensor of outputs.
|
|
"""
|
|
transformer_options["original_shape"] = list(x.shape)
|
|
transformer_options["transformer_index"] = 0
|
|
transformer_patches = transformer_options.get("patches", {})
|
|
|
|
num_video_frames = kwargs.get("num_video_frames", self.default_num_video_frames)
|
|
image_only_indicator = kwargs.get("image_only_indicator", None)
|
|
time_context = kwargs.get("time_context", None)
|
|
|
|
assert (y is not None) == (
|
|
self.num_classes is not None
|
|
), "must specify y if and only if the model is class-conditional"
|
|
hs = []
|
|
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
|
emb = self.time_embed(t_emb)
|
|
|
|
if "emb_patch" in transformer_patches:
|
|
patch = transformer_patches["emb_patch"]
|
|
for p in patch:
|
|
emb = p(emb, self.model_channels, transformer_options)
|
|
|
|
if self.num_classes is not None:
|
|
assert y.shape[0] == x.shape[0]
|
|
emb = emb + self.label_emb(y)
|
|
|
|
h = x
|
|
for id, module in enumerate(self.input_blocks):
|
|
transformer_options["block"] = ("input", id)
|
|
h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
|
|
h = apply_control(h, control, 'input')
|
|
if "input_block_patch" in transformer_patches:
|
|
patch = transformer_patches["input_block_patch"]
|
|
for p in patch:
|
|
h = p(h, transformer_options)
|
|
|
|
hs.append(h)
|
|
if "input_block_patch_after_skip" in transformer_patches:
|
|
patch = transformer_patches["input_block_patch_after_skip"]
|
|
for p in patch:
|
|
h = p(h, transformer_options)
|
|
|
|
transformer_options["block"] = ("middle", 0)
|
|
if self.middle_block is not None:
|
|
h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
|
|
h = apply_control(h, control, 'middle')
|
|
|
|
|
|
for id, module in enumerate(self.output_blocks):
|
|
transformer_options["block"] = ("output", id)
|
|
hsp = hs.pop()
|
|
hsp = apply_control(hsp, control, 'output')
|
|
|
|
if "output_block_patch" in transformer_patches:
|
|
patch = transformer_patches["output_block_patch"]
|
|
for p in patch:
|
|
h, hsp = p(h, hsp, transformer_options)
|
|
|
|
h = th.cat([h, hsp], dim=1)
|
|
del hsp
|
|
if len(hs) > 0:
|
|
output_shape = hs[-1].shape
|
|
else:
|
|
output_shape = None
|
|
h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
|
|
h = h.type(x.dtype)
|
|
if self.predict_codebook_ids:
|
|
return self.id_predictor(h)
|
|
else:
|
|
return self.out(h)
|