98 lines
3.9 KiB
Python
98 lines
3.9 KiB
Python
from comfy import sd1_clip
|
|
import torch
|
|
import os
|
|
|
|
class SDXLClipG(sd1_clip.SD1ClipModel):
|
|
def __init__(self, device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, textmodel_path=None):
|
|
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
|
|
super().__init__(device=device, freeze=freeze, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path)
|
|
self.empty_tokens = [[49406] + [49407] + [0] * 75]
|
|
self.text_projection = torch.nn.Parameter(torch.empty(1280, 1280))
|
|
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
|
|
self.layer_norm_hidden_state = False
|
|
if layer == "last":
|
|
pass
|
|
elif layer == "penultimate":
|
|
layer_idx = -1
|
|
self.clip_layer(layer_idx)
|
|
elif self.layer == "hidden":
|
|
assert layer_idx is not None
|
|
assert abs(layer_idx) < 32
|
|
self.clip_layer(layer_idx)
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
def clip_layer(self, layer_idx):
|
|
if layer_idx < 0:
|
|
layer_idx -= 1 #The real last layer of SD2.x clip is the penultimate one. The last one might contain garbage.
|
|
if abs(layer_idx) >= 32:
|
|
self.layer = "hidden"
|
|
self.layer_idx = -2
|
|
else:
|
|
self.layer = "hidden"
|
|
self.layer_idx = layer_idx
|
|
|
|
def load_sd(self, sd):
|
|
if "text_projection" in sd:
|
|
self.text_projection[:] = sd.pop("text_projection")
|
|
return super().load_sd(sd)
|
|
|
|
class SDXLClipGTokenizer(sd1_clip.SD1Tokenizer):
|
|
def __init__(self, tokenizer_path=None, embedding_directory=None):
|
|
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280)
|
|
|
|
|
|
class SDXLTokenizer(sd1_clip.SD1Tokenizer):
|
|
def __init__(self, embedding_directory=None):
|
|
self.clip_l = sd1_clip.SD1Tokenizer(embedding_directory=embedding_directory)
|
|
self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory)
|
|
|
|
def tokenize_with_weights(self, text:str, return_word_ids=False):
|
|
out = {}
|
|
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
|
|
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
|
|
return out
|
|
|
|
def untokenize(self, token_weight_pair):
|
|
return self.clip_g.untokenize(token_weight_pair)
|
|
|
|
class SDXLClipModel(torch.nn.Module):
|
|
def __init__(self, device="cpu"):
|
|
super().__init__()
|
|
self.clip_l = sd1_clip.SD1ClipModel(layer="hidden", layer_idx=11, device=device)
|
|
self.clip_l.layer_norm_hidden_state = False
|
|
self.clip_g = SDXLClipG(device=device)
|
|
|
|
def clip_layer(self, layer_idx):
|
|
self.clip_l.clip_layer(layer_idx)
|
|
self.clip_g.clip_layer(layer_idx)
|
|
|
|
def encode_token_weights(self, token_weight_pairs):
|
|
token_weight_pairs_g = token_weight_pairs["g"]
|
|
token_weight_pairs_l = token_weight_pairs["l"]
|
|
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
|
|
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
|
|
return torch.cat([l_out, g_out], dim=-1), g_pooled
|
|
|
|
def load_sd(self, sd):
|
|
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
|
|
return self.clip_g.load_sd(sd)
|
|
else:
|
|
return self.clip_l.load_sd(sd)
|
|
|
|
class SDXLRefinerClipModel(torch.nn.Module):
|
|
def __init__(self, device="cpu"):
|
|
super().__init__()
|
|
self.clip_g = SDXLClipG(device=device)
|
|
|
|
def clip_layer(self, layer_idx):
|
|
self.clip_g.clip_layer(layer_idx)
|
|
|
|
def encode_token_weights(self, token_weight_pairs):
|
|
token_weight_pairs_g = token_weight_pairs["g"]
|
|
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
|
|
return g_out, g_pooled
|
|
|
|
def load_sd(self, sd):
|
|
return self.clip_g.load_sd(sd)
|