ComfyUI/comfy_extras/chainner_models/architecture/SRVGG.py

115 lines
4.0 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import math
import torch.nn as nn
import torch.nn.functional as F
class SRVGGNetCompact(nn.Module):
"""A compact VGG-style network structure for super-resolution.
It is a compact network structure, which performs upsampling in the last layer and no convolution is
conducted on the HR feature space.
Args:
num_in_ch (int): Channel number of inputs. Default: 3.
num_out_ch (int): Channel number of outputs. Default: 3.
num_feat (int): Channel number of intermediate features. Default: 64.
num_conv (int): Number of convolution layers in the body network. Default: 16.
upscale (int): Upsampling factor. Default: 4.
act_type (str): Activation type, options: 'relu', 'prelu', 'leakyrelu'. Default: prelu.
"""
def __init__(
self,
state_dict,
act_type: str = "prelu",
):
super(SRVGGNetCompact, self).__init__()
self.model_arch = "SRVGG (RealESRGAN)"
self.sub_type = "SR"
self.act_type = act_type
self.state = state_dict
if "params" in self.state:
self.state = self.state["params"]
self.key_arr = list(self.state.keys())
self.in_nc = self.get_in_nc()
self.num_feat = self.get_num_feats()
self.num_conv = self.get_num_conv()
self.out_nc = self.in_nc # :(
self.pixelshuffle_shape = None # Defined in get_scale()
self.scale = self.get_scale()
self.supports_fp16 = True
self.supports_bfp16 = True
self.min_size_restriction = None
self.body = nn.ModuleList()
# the first conv
self.body.append(nn.Conv2d(self.in_nc, self.num_feat, 3, 1, 1))
# the first activation
if act_type == "relu":
activation = nn.ReLU(inplace=True)
elif act_type == "prelu":
activation = nn.PReLU(num_parameters=self.num_feat)
elif act_type == "leakyrelu":
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.body.append(activation) # type: ignore
# the body structure
for _ in range(self.num_conv):
self.body.append(nn.Conv2d(self.num_feat, self.num_feat, 3, 1, 1))
# activation
if act_type == "relu":
activation = nn.ReLU(inplace=True)
elif act_type == "prelu":
activation = nn.PReLU(num_parameters=self.num_feat)
elif act_type == "leakyrelu":
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.body.append(activation) # type: ignore
# the last conv
self.body.append(nn.Conv2d(self.num_feat, self.pixelshuffle_shape, 3, 1, 1)) # type: ignore
# upsample
self.upsampler = nn.PixelShuffle(self.scale)
self.load_state_dict(self.state, strict=False)
def get_num_conv(self) -> int:
return (int(self.key_arr[-1].split(".")[1]) - 2) // 2
def get_num_feats(self) -> int:
return self.state[self.key_arr[0]].shape[0]
def get_in_nc(self) -> int:
return self.state[self.key_arr[0]].shape[1]
def get_scale(self) -> int:
self.pixelshuffle_shape = self.state[self.key_arr[-1]].shape[0]
# Assume out_nc is the same as in_nc
# I cant think of a better way to do that
self.out_nc = self.in_nc
scale = math.sqrt(self.pixelshuffle_shape / self.out_nc)
if scale - int(scale) > 0:
print(
"out_nc is probably different than in_nc, scale calculation might be wrong"
)
scale = int(scale)
return scale
def forward(self, x):
out = x
for i in range(0, len(self.body)):
out = self.body[i](out)
out = self.upsampler(out)
# add the nearest upsampled image, so that the network learns the residual
base = F.interpolate(x, scale_factor=self.scale, mode="nearest")
out += base
return out