ComfyUI/nodes.py

615 lines
23 KiB
Python

import torch
import os
import sys
import json
import hashlib
import copy
from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np
sys.path.insert(0, os.path.join(sys.path[0], "comfy"))
import comfy.samplers
import comfy.sd
import model_management
from importlib import import_module
supported_ckpt_extensions = ['.ckpt']
supported_pt_extensions = ['.ckpt', '.pt', '.bin']
try:
import safetensors.torch
supported_ckpt_extensions += ['.safetensors']
supported_pt_extensions += ['.safetensors']
except:
print("Could not import safetensors, safetensors support disabled.")
def recursive_search(directory):
result = []
for root, subdir, file in os.walk(directory, followlinks=True):
for filepath in file:
#we os.path,join directory with a blank string to generate a path separator at the end.
result.append(os.path.join(root, filepath).replace(os.path.join(directory,''),''))
return result
def filter_files_extensions(files, extensions):
return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions, files)))
class CLIPTextEncode:
@classmethod
def INPUT_TYPES(s):
return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "encode"
CATEGORY = "conditioning"
def encode(self, clip, text):
return ([[clip.encode(text), {}]], )
class ConditioningCombine:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "combine"
CATEGORY = "conditioning"
def combine(self, conditioning_1, conditioning_2):
return (conditioning_1 + conditioning_2, )
class ConditioningSetArea:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"width": ("INT", {"default": 64, "min": 64, "max": 4096, "step": 64}),
"height": ("INT", {"default": 64, "min": 64, "max": 4096, "step": 64}),
"x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}),
"y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "append"
CATEGORY = "conditioning"
def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0):
c = copy.deepcopy(conditioning)
for t in c:
t[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
t[1]['strength'] = strength
t[1]['min_sigma'] = min_sigma
t[1]['max_sigma'] = max_sigma
return (c, )
class VAEDecode:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "decode"
CATEGORY = "latent"
def decode(self, vae, samples):
return (vae.decode(samples), )
class VAEEncode:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "encode"
CATEGORY = "latent"
def encode(self, vae, pixels):
x = (pixels.shape[1] // 64) * 64
y = (pixels.shape[2] // 64) * 64
if pixels.shape[1] != x or pixels.shape[2] != y:
pixels = pixels[:,:x,:y,:]
return (vae.encode(pixels), )
class CheckpointLoader:
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
config_dir = os.path.join(models_dir, "configs")
ckpt_dir = os.path.join(models_dir, "checkpoints")
embedding_directory = os.path.join(models_dir, "embeddings")
@classmethod
def INPUT_TYPES(s):
return {"required": { "config_name": (filter_files_extensions(recursive_search(s.config_dir), '.yaml'), ),
"ckpt_name": (filter_files_extensions(recursive_search(s.ckpt_dir), supported_ckpt_extensions), )}}
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
FUNCTION = "load_checkpoint"
CATEGORY = "loaders"
def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
config_path = os.path.join(self.config_dir, config_name)
ckpt_path = os.path.join(self.ckpt_dir, ckpt_name)
return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=self.embedding_directory)
class LoraLoader:
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
lora_dir = os.path.join(models_dir, "loras")
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"clip": ("CLIP", ),
"lora_name": (filter_files_extensions(recursive_search(s.lora_dir), supported_pt_extensions), ),
"strength_model": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"strength_clip": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL", "CLIP")
FUNCTION = "load_lora"
CATEGORY = "loaders"
def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
lora_path = os.path.join(self.lora_dir, lora_name)
model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
return (model_lora, clip_lora)
class VAELoader:
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
vae_dir = os.path.join(models_dir, "vae")
@classmethod
def INPUT_TYPES(s):
return {"required": { "vae_name": (filter_files_extensions(recursive_search(s.vae_dir), supported_pt_extensions), )}}
RETURN_TYPES = ("VAE",)
FUNCTION = "load_vae"
CATEGORY = "loaders"
#TODO: scale factor?
def load_vae(self, vae_name):
vae_path = os.path.join(self.vae_dir, vae_name)
vae = comfy.sd.VAE(ckpt_path=vae_path)
return (vae,)
class CLIPLoader:
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
clip_dir = os.path.join(models_dir, "clip")
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_name": (filter_files_extensions(recursive_search(s.clip_dir), supported_pt_extensions), ),
"stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "load_clip"
CATEGORY = "loaders"
def load_clip(self, clip_name, stop_at_clip_layer):
clip_path = os.path.join(self.clip_dir, clip_name)
clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=CheckpointLoader.embedding_directory)
clip.clip_layer(stop_at_clip_layer)
return (clip,)
class EmptyLatentImage:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
"height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "generate"
CATEGORY = "latent"
def generate(self, width, height, batch_size=1):
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
return (latent, )
def common_upscale(samples, width, height, upscale_method, crop):
if crop == "center":
old_width = samples.shape[3]
old_height = samples.shape[2]
old_aspect = old_width / old_height
new_aspect = width / height
x = 0
y = 0
if old_aspect > new_aspect:
x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
elif old_aspect < new_aspect:
y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
s = samples[:,:,y:old_height-y,x:old_width-x]
else:
s = samples
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
class LatentUpscale:
upscale_methods = ["nearest-exact", "bilinear", "area"]
crop_methods = ["disabled", "center"]
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
"width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
"height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
"crop": (s.crop_methods,)}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "upscale"
CATEGORY = "latent"
def upscale(self, samples, upscale_method, width, height, crop):
s = common_upscale(samples, width // 8, height // 8, upscale_method, crop)
return (s,)
class LatentRotate:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "rotate"
CATEGORY = "latent"
def rotate(self, samples, rotation):
rotate_by = 0
if rotation.startswith("90"):
rotate_by = 1
elif rotation.startswith("180"):
rotate_by = 2
elif rotation.startswith("270"):
rotate_by = 3
s = torch.rot90(samples, k=rotate_by, dims=[3, 2])
return (s,)
class LatentFlip:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "flip"
CATEGORY = "latent"
def flip(self, samples, flip_method):
if flip_method.startswith("x"):
s = torch.flip(samples, dims=[2])
elif flip_method.startswith("y"):
s = torch.flip(samples, dims=[3])
else:
s = samples
return (s,)
class LatentComposite:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples_to": ("LATENT",),
"samples_from": ("LATENT",),
"x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
"feather": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "composite"
CATEGORY = "latent"
def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
x = x // 8
y = y // 8
feather = feather // 8
s = samples_to.clone()
if feather == 0:
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
else:
s_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
mask = torch.ones_like(s_from)
for t in range(feather):
if y != 0:
mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))
if y + samples_from.shape[2] < samples_to.shape[2]:
mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
if x != 0:
mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
if x + samples_from.shape[3] < samples_to.shape[3]:
mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
rev_mask = torch.ones_like(mask) - mask
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
return (s,)
class LatentCrop:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
"height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
"x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "crop"
CATEGORY = "latent"
def crop(self, samples, width, height, x, y):
x = x // 8
y = y // 8
#enfonce minimum size of 64
if x > (samples.shape[3] - 8):
x = samples.shape[3] - 8
if y > (samples.shape[2] - 8):
y = samples.shape[2] - 8
new_height = height // 8
new_width = width // 8
to_x = new_width + x
to_y = new_height + y
def enforce_image_dim(d, to_d, max_d):
if to_d > max_d:
leftover = (to_d - max_d) % 8
to_d = max_d
d -= leftover
return (d, to_d)
#make sure size is always multiple of 64
x, to_x = enforce_image_dim(x, to_x, samples.shape[3])
y, to_y = enforce_image_dim(y, to_y, samples.shape[2])
s = samples[:,:,y:to_y, x:to_x]
return (s,)
def common_ksampler(device, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
if disable_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
else:
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu")
real_model = None
if device != "cpu":
model_management.load_model_gpu(model)
real_model = model.model
else:
#TODO: cpu support
real_model = model.patch_model()
noise = noise.to(device)
latent_image = latent_image.to(device)
positive_copy = []
negative_copy = []
for p in positive:
t = p[0]
if t.shape[0] < noise.shape[0]:
t = torch.cat([t] * noise.shape[0])
t = t.to(device)
positive_copy += [[t] + p[1:]]
for n in negative:
t = n[0]
if t.shape[0] < noise.shape[0]:
t = torch.cat([t] * noise.shape[0])
t = t.to(device)
negative_copy += [[t] + n[1:]]
if sampler_name in comfy.samplers.KSampler.SAMPLERS:
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise)
else:
#other samplers
pass
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise)
samples = samples.cpu()
return (samples, )
class KSampler:
def __init__(self, device="cuda"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model": ("MODEL",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"latent_image": ("LATENT", ),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "sample"
CATEGORY = "sampling"
def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
return common_ksampler(self.device, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
class KSamplerAdvanced:
def __init__(self, device="cuda"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model": ("MODEL",),
"add_noise": (["enable", "disable"], ),
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"latent_image": ("LATENT", ),
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
"return_with_leftover_noise": (["disable", "enable"], ),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "sample"
CATEGORY = "sampling"
def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
force_full_denoise = True
if return_with_leftover_noise == "enable":
force_full_denoise = False
disable_noise = False
if add_noise == "disable":
disable_noise = True
return common_ksampler(self.device, model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
class SaveImage:
def __init__(self):
self.output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")
@classmethod
def INPUT_TYPES(s):
return {"required":
{"images": ("IMAGE", ),
"filename_prefix": ("STRING", {"default": "ComfyUI"})},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ()
FUNCTION = "save_images"
OUTPUT_NODE = True
CATEGORY = "image"
def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
def map_filename(filename):
prefix_len = len(filename_prefix)
prefix = filename[:prefix_len + 1]
try:
digits = int(filename[prefix_len + 1:].split('_')[0])
except:
digits = 0
return (digits, prefix)
try:
counter = max(filter(lambda a: a[1][:-1] == filename_prefix and a[1][-1] == "_", map(map_filename, os.listdir(self.output_dir))))[0] + 1
except ValueError:
counter = 1
except FileNotFoundError:
os.mkdir(self.output_dir)
counter = 1
for image in images:
i = 255. * image.cpu().numpy()
img = Image.fromarray(i.astype(np.uint8))
metadata = PngInfo()
if prompt is not None:
metadata.add_text("prompt", json.dumps(prompt))
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
img.save(os.path.join(self.output_dir, f"{filename_prefix}_{counter:05}_.png"), pnginfo=metadata, optimize=True)
counter += 1
class LoadImage:
input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
@classmethod
def INPUT_TYPES(s):
return {"required":
{"image": (os.listdir(s.input_dir), )},
}
CATEGORY = "image"
RETURN_TYPES = ("IMAGE",)
FUNCTION = "load_image"
def load_image(self, image):
image_path = os.path.join(self.input_dir, image)
image = Image.open(image_path).convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image[None])[None,]
return image
@classmethod
def IS_CHANGED(s, image):
image_path = os.path.join(s.input_dir, image)
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()
class ImageScale:
upscale_methods = ["nearest-exact", "bilinear", "area"]
crop_methods = ["disabled", "center"]
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
"width": ("INT", {"default": 512, "min": 1, "max": 4096, "step": 1}),
"height": ("INT", {"default": 512, "min": 1, "max": 4096, "step": 1}),
"crop": (s.crop_methods,)}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "upscale"
CATEGORY = "image"
def upscale(self, image, upscale_method, width, height, crop):
samples = image.movedim(-1,1)
s = common_upscale(samples, width, height, upscale_method, crop)
s = s.movedim(1,-1)
return (s,)
NODE_CLASS_MAPPINGS = {
"KSampler": KSampler,
"CheckpointLoader": CheckpointLoader,
"CLIPTextEncode": CLIPTextEncode,
"VAEDecode": VAEDecode,
"VAEEncode": VAEEncode,
"VAELoader": VAELoader,
"EmptyLatentImage": EmptyLatentImage,
"LatentUpscale": LatentUpscale,
"SaveImage": SaveImage,
"LoadImage": LoadImage,
"ImageScale": ImageScale,
"ConditioningCombine": ConditioningCombine,
"ConditioningSetArea": ConditioningSetArea,
"KSamplerAdvanced": KSamplerAdvanced,
"LatentComposite": LatentComposite,
"LatentRotate": LatentRotate,
"LatentFlip": LatentFlip,
"LatentCrop": LatentCrop,
"LoraLoader": LoraLoader,
"CLIPLoader": CLIPLoader,
}
def load_custom_nodes():
possible_modules = os.listdir("custom_nodes")
possible_modules.remove("put_custom_nodes_here")
for possible_module in possible_modules:
try:
custom_nodes = import_module(possible_module, "custom_nodes")
if getattr(custom_nodes, "NODE_CLASS_MAPPINGS") is not None:
NODE_CLASS_MAPPINGS.update(custom_nodes.NODE_CLASS_MAPPINGS)
else:
NODE_CLASS_MAPPINGS[possible_module] = custom_nodes
except ImportError as e:
print(f"Cannot import {possible_module} node.")
print(e)
load_custom_nodes()