65 lines
2.3 KiB
Python
65 lines
2.3 KiB
Python
import torch
|
|
import comfy.model_management
|
|
|
|
|
|
def prepare_noise(latent, seed):
|
|
"""creates random noise given a LATENT and a seed"""
|
|
latent_image = latent["samples"]
|
|
batch_index = 0
|
|
if "batch_index" in latent:
|
|
batch_index = latent["batch_index"]
|
|
|
|
generator = torch.manual_seed(seed)
|
|
for i in range(batch_index):
|
|
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
|
|
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
|
|
return noise
|
|
|
|
def create_mask(latent, noise):
|
|
"""creates a mask for a given LATENT and noise"""
|
|
noise_mask = None
|
|
device = comfy.model_management.get_torch_device()
|
|
if "noise_mask" in latent:
|
|
noise_mask = latent['noise_mask']
|
|
noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear")
|
|
noise_mask = noise_mask.round()
|
|
noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
|
|
noise_mask = torch.cat([noise_mask] * noise.shape[0])
|
|
noise_mask = noise_mask.to(device)
|
|
return noise_mask
|
|
|
|
def broadcast_cond(cond, noise):
|
|
"""broadcasts conditioning to the noise batch size"""
|
|
device = comfy.model_management.get_torch_device()
|
|
copy = []
|
|
for p in cond:
|
|
t = p[0]
|
|
if t.shape[0] < noise.shape[0]:
|
|
t = torch.cat([t] * noise.shape[0])
|
|
t = t.to(device)
|
|
copy += [[t] + p[1:]]
|
|
return copy
|
|
|
|
def load_c_nets(positive, negative):
|
|
"""loads control nets in positive and negative conditioning"""
|
|
def get_models(cond):
|
|
models = []
|
|
for c in cond:
|
|
if 'control' in c[1]:
|
|
models += [c[1]['control']]
|
|
if 'gligen' in c[1]:
|
|
models += [c[1]['gligen'][1]]
|
|
return models
|
|
|
|
return get_models(positive) + get_models(negative)
|
|
|
|
def load_additional_models(positive, negative):
|
|
"""loads additional models in positive and negative conditioning"""
|
|
models = load_c_nets(positive, negative)
|
|
comfy.model_management.load_controlnet_gpu(models)
|
|
return models
|
|
|
|
def cleanup_additional_models(models):
|
|
"""cleanup additional models that were loaded"""
|
|
for m in models:
|
|
m.cleanup() |