ComfyUI/comfy/ldm/hydit/models.py

410 lines
16 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from typing import Any
import torch
import torch.nn as nn
import torch.nn.functional as F
import comfy.ops
from comfy.ldm.modules.diffusionmodules.mmdit import Mlp, TimestepEmbedder, PatchEmbed, RMSNorm
from comfy.ldm.modules.diffusionmodules.util import timestep_embedding
from torch.utils import checkpoint
from .attn_layers import Attention, CrossAttention
from .poolers import AttentionPool
from .posemb_layers import get_2d_rotary_pos_embed, get_fill_resize_and_crop
def calc_rope(x, patch_size, head_size):
th = (x.shape[2] + (patch_size // 2)) // patch_size
tw = (x.shape[3] + (patch_size // 2)) // patch_size
base_size = 512 // 8 // patch_size
start, stop = get_fill_resize_and_crop((th, tw), base_size)
sub_args = [start, stop, (th, tw)]
# head_size = HUNYUAN_DIT_CONFIG['DiT-g/2']['hidden_size'] // HUNYUAN_DIT_CONFIG['DiT-g/2']['num_heads']
rope = get_2d_rotary_pos_embed(head_size, *sub_args)
return rope
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
class HunYuanDiTBlock(nn.Module):
"""
A HunYuanDiT block with `add` conditioning.
"""
def __init__(self,
hidden_size,
c_emb_size,
num_heads,
mlp_ratio=4.0,
text_states_dim=1024,
qk_norm=False,
norm_type="layer",
skip=False,
attn_precision=None,
dtype=None,
device=None,
operations=None,
):
super().__init__()
use_ele_affine = True
if norm_type == "layer":
norm_layer = operations.LayerNorm
elif norm_type == "rms":
norm_layer = RMSNorm
else:
raise ValueError(f"Unknown norm_type: {norm_type}")
# ========================= Self-Attention =========================
self.norm1 = norm_layer(hidden_size, elementwise_affine=use_ele_affine, eps=1e-6, dtype=dtype, device=device)
self.attn1 = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, qk_norm=qk_norm, attn_precision=attn_precision, dtype=dtype, device=device, operations=operations)
# ========================= FFN =========================
self.norm2 = norm_layer(hidden_size, elementwise_affine=use_ele_affine, eps=1e-6, dtype=dtype, device=device)
mlp_hidden_dim = int(hidden_size * mlp_ratio)
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0, dtype=dtype, device=device, operations=operations)
# ========================= Add =========================
# Simply use add like SDXL.
self.default_modulation = nn.Sequential(
nn.SiLU(),
operations.Linear(c_emb_size, hidden_size, bias=True, dtype=dtype, device=device)
)
# ========================= Cross-Attention =========================
self.attn2 = CrossAttention(hidden_size, text_states_dim, num_heads=num_heads, qkv_bias=True,
qk_norm=qk_norm, attn_precision=attn_precision, dtype=dtype, device=device, operations=operations)
self.norm3 = norm_layer(hidden_size, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device)
# ========================= Skip Connection =========================
if skip:
self.skip_norm = norm_layer(2 * hidden_size, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device)
self.skip_linear = operations.Linear(2 * hidden_size, hidden_size, dtype=dtype, device=device)
else:
self.skip_linear = None
self.gradient_checkpointing = False
def _forward(self, x, c=None, text_states=None, freq_cis_img=None, skip=None):
# Long Skip Connection
if self.skip_linear is not None:
cat = torch.cat([x, skip], dim=-1)
if cat.dtype != x.dtype:
cat = cat.to(x.dtype)
cat = self.skip_norm(cat)
x = self.skip_linear(cat)
# Self-Attention
shift_msa = self.default_modulation(c).unsqueeze(dim=1)
attn_inputs = (
self.norm1(x) + shift_msa, freq_cis_img,
)
x = x + self.attn1(*attn_inputs)[0]
# Cross-Attention
cross_inputs = (
self.norm3(x), text_states, freq_cis_img
)
x = x + self.attn2(*cross_inputs)[0]
# FFN Layer
mlp_inputs = self.norm2(x)
x = x + self.mlp(mlp_inputs)
return x
def forward(self, x, c=None, text_states=None, freq_cis_img=None, skip=None):
if self.gradient_checkpointing and self.training:
return checkpoint.checkpoint(self._forward, x, c, text_states, freq_cis_img, skip)
return self._forward(x, c, text_states, freq_cis_img, skip)
class FinalLayer(nn.Module):
"""
The final layer of HunYuanDiT.
"""
def __init__(self, final_hidden_size, c_emb_size, patch_size, out_channels, dtype=None, device=None, operations=None):
super().__init__()
self.norm_final = operations.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.linear = operations.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
operations.Linear(c_emb_size, 2 * final_hidden_size, bias=True, dtype=dtype, device=device)
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class HunYuanDiT(nn.Module):
"""
HunYuanDiT: Diffusion model with a Transformer backbone.
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers.
Inherit PeftAdapterMixin to be compatible with the PEFT training pipeline.
Parameters
----------
args: argparse.Namespace
The arguments parsed by argparse.
input_size: tuple
The size of the input image.
patch_size: int
The size of the patch.
in_channels: int
The number of input channels.
hidden_size: int
The hidden size of the transformer backbone.
depth: int
The number of transformer blocks.
num_heads: int
The number of attention heads.
mlp_ratio: float
The ratio of the hidden size of the MLP in the transformer block.
log_fn: callable
The logging function.
"""
#@register_to_config
def __init__(self,
input_size: tuple = 32,
patch_size: int = 2,
in_channels: int = 4,
hidden_size: int = 1152,
depth: int = 28,
num_heads: int = 16,
mlp_ratio: float = 4.0,
text_states_dim = 1024,
text_states_dim_t5 = 2048,
text_len = 77,
text_len_t5 = 256,
qk_norm = True,# See http://arxiv.org/abs/2302.05442 for details.
size_cond = False,
use_style_cond = False,
learn_sigma = True,
norm = "layer",
log_fn: callable = print,
attn_precision=None,
dtype=None,
device=None,
operations=None,
**kwargs,
):
super().__init__()
self.log_fn = log_fn
self.depth = depth
self.learn_sigma = learn_sigma
self.in_channels = in_channels
self.out_channels = in_channels * 2 if learn_sigma else in_channels
self.patch_size = patch_size
self.num_heads = num_heads
self.hidden_size = hidden_size
self.text_states_dim = text_states_dim
self.text_states_dim_t5 = text_states_dim_t5
self.text_len = text_len
self.text_len_t5 = text_len_t5
self.size_cond = size_cond
self.use_style_cond = use_style_cond
self.norm = norm
self.dtype = dtype
#import pdb
#pdb.set_trace()
self.mlp_t5 = nn.Sequential(
operations.Linear(self.text_states_dim_t5, self.text_states_dim_t5 * 4, bias=True, dtype=dtype, device=device),
nn.SiLU(),
operations.Linear(self.text_states_dim_t5 * 4, self.text_states_dim, bias=True, dtype=dtype, device=device),
)
# learnable replace
self.text_embedding_padding = nn.Parameter(
torch.empty(self.text_len + self.text_len_t5, self.text_states_dim, dtype=dtype, device=device))
# Attention pooling
pooler_out_dim = 1024
self.pooler = AttentionPool(self.text_len_t5, self.text_states_dim_t5, num_heads=8, output_dim=pooler_out_dim, dtype=dtype, device=device, operations=operations)
# Dimension of the extra input vectors
self.extra_in_dim = pooler_out_dim
if self.size_cond:
# Image size and crop size conditions
self.extra_in_dim += 6 * 256
if self.use_style_cond:
# Here we use a default learned embedder layer for future extension.
self.style_embedder = operations.Embedding(1, hidden_size, dtype=dtype, device=device)
self.extra_in_dim += hidden_size
# Text embedding for `add`
self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, dtype=dtype, device=device, operations=operations)
self.t_embedder = TimestepEmbedder(hidden_size, dtype=dtype, device=device, operations=operations)
self.extra_embedder = nn.Sequential(
operations.Linear(self.extra_in_dim, hidden_size * 4, dtype=dtype, device=device),
nn.SiLU(),
operations.Linear(hidden_size * 4, hidden_size, bias=True, dtype=dtype, device=device),
)
# Image embedding
num_patches = self.x_embedder.num_patches
# HUnYuanDiT Blocks
self.blocks = nn.ModuleList([
HunYuanDiTBlock(hidden_size=hidden_size,
c_emb_size=hidden_size,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
text_states_dim=self.text_states_dim,
qk_norm=qk_norm,
norm_type=self.norm,
skip=layer > depth // 2,
attn_precision=attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
for layer in range(depth)
])
self.final_layer = FinalLayer(hidden_size, hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations)
self.unpatchify_channels = self.out_channels
def forward(self,
x,
t,
context,#encoder_hidden_states=None,
text_embedding_mask=None,
encoder_hidden_states_t5=None,
text_embedding_mask_t5=None,
image_meta_size=None,
style=None,
return_dict=False,
control=None,
transformer_options=None,
):
"""
Forward pass of the encoder.
Parameters
----------
x: torch.Tensor
(B, D, H, W)
t: torch.Tensor
(B)
encoder_hidden_states: torch.Tensor
CLIP text embedding, (B, L_clip, D)
text_embedding_mask: torch.Tensor
CLIP text embedding mask, (B, L_clip)
encoder_hidden_states_t5: torch.Tensor
T5 text embedding, (B, L_t5, D)
text_embedding_mask_t5: torch.Tensor
T5 text embedding mask, (B, L_t5)
image_meta_size: torch.Tensor
(B, 6)
style: torch.Tensor
(B)
cos_cis_img: torch.Tensor
sin_cis_img: torch.Tensor
return_dict: bool
Whether to return a dictionary.
"""
#import pdb
#pdb.set_trace()
encoder_hidden_states = context
text_states = encoder_hidden_states # 2,77,1024
text_states_t5 = encoder_hidden_states_t5 # 2,256,2048
text_states_mask = text_embedding_mask.bool() # 2,77
text_states_t5_mask = text_embedding_mask_t5.bool() # 2,256
b_t5, l_t5, c_t5 = text_states_t5.shape
text_states_t5 = self.mlp_t5(text_states_t5.view(-1, c_t5)).view(b_t5, l_t5, -1)
padding = comfy.ops.cast_to_input(self.text_embedding_padding, text_states)
text_states[:,-self.text_len:] = torch.where(text_states_mask[:,-self.text_len:].unsqueeze(2), text_states[:,-self.text_len:], padding[:self.text_len])
text_states_t5[:,-self.text_len_t5:] = torch.where(text_states_t5_mask[:,-self.text_len_t5:].unsqueeze(2), text_states_t5[:,-self.text_len_t5:], padding[self.text_len:])
text_states = torch.cat([text_states, text_states_t5], dim=1) # 2,2051024
# clip_t5_mask = torch.cat([text_states_mask, text_states_t5_mask], dim=-1)
_, _, oh, ow = x.shape
th, tw = (oh + (self.patch_size // 2)) // self.patch_size, (ow + (self.patch_size // 2)) // self.patch_size
# Get image RoPE embedding according to `reso`lution.
freqs_cis_img = calc_rope(x, self.patch_size, self.hidden_size // self.num_heads) #(cos_cis_img, sin_cis_img)
# ========================= Build time and image embedding =========================
t = self.t_embedder(t, dtype=x.dtype)
x = self.x_embedder(x)
# ========================= Concatenate all extra vectors =========================
# Build text tokens with pooling
extra_vec = self.pooler(encoder_hidden_states_t5)
# Build image meta size tokens if applicable
if self.size_cond:
image_meta_size = timestep_embedding(image_meta_size.view(-1), 256).to(x.dtype) # [B * 6, 256]
image_meta_size = image_meta_size.view(-1, 6 * 256)
extra_vec = torch.cat([extra_vec, image_meta_size], dim=1) # [B, D + 6 * 256]
# Build style tokens
if self.use_style_cond:
if style is None:
style = torch.zeros((extra_vec.shape[0],), device=x.device, dtype=torch.int)
style_embedding = self.style_embedder(style, out_dtype=x.dtype)
extra_vec = torch.cat([extra_vec, style_embedding], dim=1)
# Concatenate all extra vectors
c = t + self.extra_embedder(extra_vec) # [B, D]
controls = None
if control:
controls = control.get("output", None)
# ========================= Forward pass through HunYuanDiT blocks =========================
skips = []
for layer, block in enumerate(self.blocks):
if layer > self.depth // 2:
if controls is not None:
skip = skips.pop() + controls.pop()
else:
skip = skips.pop()
x = block(x, c, text_states, freqs_cis_img, skip) # (N, L, D)
else:
x = block(x, c, text_states, freqs_cis_img) # (N, L, D)
if layer < (self.depth // 2 - 1):
skips.append(x)
if controls is not None and len(controls) != 0:
raise ValueError("The number of controls is not equal to the number of skip connections.")
# ========================= Final layer =========================
x = self.final_layer(x, c) # (N, L, patch_size ** 2 * out_channels)
x = self.unpatchify(x, th, tw) # (N, out_channels, H, W)
if return_dict:
return {'x': x}
if self.learn_sigma:
return x[:,:self.out_channels // 2,:oh,:ow]
return x[:,:,:oh,:ow]
def unpatchify(self, x, h, w):
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.unpatchify_channels
p = self.x_embedder.patch_size[0]
# h = w = int(x.shape[1] ** 0.5)
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
return imgs