ComfyUI/comfy_extras/nodes_post_processing.py

216 lines
6.6 KiB
Python

import torch
import torch.nn.functional as F
class Blend:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image1": ("IMAGE",),
"image2": ("IMAGE",),
"blend_factor": ("FLOAT", {
"default": 0.5,
"min": 0.0,
"max": 1.0,
"step": 0.01
}),
"blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light"],),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "blend_images"
CATEGORY = "postprocessing"
def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str):
blended_image = self.blend_mode(image1, image2, blend_mode)
blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor
blended_image = torch.clamp(blended_image, 0, 1)
return (blended_image,)
def blend_mode(self, img1, img2, mode):
if mode == "normal":
return img2
elif mode == "multiply":
return img1 * img2
elif mode == "screen":
return 1 - (1 - img1) * (1 - img2)
elif mode == "overlay":
return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2))
elif mode == "soft_light":
return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1))
else:
raise ValueError(f"Unsupported blend mode: {mode}")
def g(self, x):
return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x))
class Blur:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"blur_radius": ("INT", {
"default": 1,
"min": 1,
"max": 31,
"step": 1
}),
"sigma": ("FLOAT", {
"default": 1.0,
"min": 0.1,
"max": 10.0,
"step": 0.1
}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "blur"
CATEGORY = "postprocessing"
def gaussian_kernel(self, kernel_size: int, sigma: float):
x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size), torch.linspace(-1, 1, kernel_size), indexing="ij")
d = torch.sqrt(x * x + y * y)
g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
return g / g.sum()
def blur(self, image: torch.Tensor, blur_radius: int, sigma: float):
if blur_radius == 0:
return (image,)
batch_size, height, width, channels = image.shape
kernel_size = blur_radius * 2 + 1
kernel = self.gaussian_kernel(kernel_size, sigma).repeat(channels, 1, 1).unsqueeze(1)
image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
blurred = F.conv2d(image, kernel, padding=kernel_size // 2, groups=channels)
blurred = blurred.permute(0, 2, 3, 1)
return (blurred,)
class Dither:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"bits": ("INT", {
"default": 4,
"min": 1,
"max": 8,
"step": 1
}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "dither"
CATEGORY = "postprocessing"
def dither(self, image: torch.Tensor, bits: int):
batch_size, height, width, _ = image.shape
result = torch.zeros_like(image)
for b in range(batch_size):
tensor_image = image[b]
img = (tensor_image * 255)
height, width, _ = img.shape
scale = 255 / (2**bits - 1)
for y in range(height):
for x in range(width):
old_pixel = img[y, x].clone()
new_pixel = torch.round(old_pixel / scale) * scale
img[y, x] = new_pixel
quant_error = old_pixel - new_pixel
if x + 1 < width:
img[y, x + 1] += quant_error * 7 / 16
if y + 1 < height:
if x - 1 >= 0:
img[y + 1, x - 1] += quant_error * 3 / 16
img[y + 1, x] += quant_error * 5 / 16
if x + 1 < width:
img[y + 1, x + 1] += quant_error * 1 / 16
dithered = img / 255
tensor = dithered.unsqueeze(0)
result[b] = tensor
return (result,)
class Sharpen:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"sharpen_radius": ("INT", {
"default": 1,
"min": 1,
"max": 31,
"step": 1
}),
"alpha": ("FLOAT", {
"default": 1.0,
"min": 0.1,
"max": 5.0,
"step": 0.1
}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "sharpen"
CATEGORY = "postprocessing"
def sharpen(self, image: torch.Tensor, sharpen_radius: int, alpha: float):
if sharpen_radius == 0:
return (image,)
batch_size, height, width, channels = image.shape
kernel_size = sharpen_radius * 2 + 1
kernel = torch.ones((kernel_size, kernel_size), dtype=torch.float32) * -1
center = kernel_size // 2
kernel[center, center] = kernel_size**2
kernel *= alpha
kernel = kernel.repeat(channels, 1, 1).unsqueeze(1)
tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)
sharpened = sharpened.permute(0, 2, 3, 1)
result = torch.clamp(sharpened, 0, 1)
return (result,)
NODE_CLASS_MAPPINGS = {
"Blend": Blend,
"Blur": Blur,
"Dither": Dither,
"Sharpen": Sharpen,
}