216 lines
6.6 KiB
Python
216 lines
6.6 KiB
Python
import torch
|
|
import torch.nn.functional as F
|
|
|
|
|
|
class Blend:
|
|
def __init__(self):
|
|
pass
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image1": ("IMAGE",),
|
|
"image2": ("IMAGE",),
|
|
"blend_factor": ("FLOAT", {
|
|
"default": 0.5,
|
|
"min": 0.0,
|
|
"max": 1.0,
|
|
"step": 0.01
|
|
}),
|
|
"blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light"],),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "blend_images"
|
|
|
|
CATEGORY = "postprocessing"
|
|
|
|
def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str):
|
|
blended_image = self.blend_mode(image1, image2, blend_mode)
|
|
blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor
|
|
blended_image = torch.clamp(blended_image, 0, 1)
|
|
return (blended_image,)
|
|
|
|
def blend_mode(self, img1, img2, mode):
|
|
if mode == "normal":
|
|
return img2
|
|
elif mode == "multiply":
|
|
return img1 * img2
|
|
elif mode == "screen":
|
|
return 1 - (1 - img1) * (1 - img2)
|
|
elif mode == "overlay":
|
|
return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2))
|
|
elif mode == "soft_light":
|
|
return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1))
|
|
else:
|
|
raise ValueError(f"Unsupported blend mode: {mode}")
|
|
|
|
def g(self, x):
|
|
return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x))
|
|
|
|
class Blur:
|
|
def __init__(self):
|
|
pass
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"blur_radius": ("INT", {
|
|
"default": 1,
|
|
"min": 1,
|
|
"max": 31,
|
|
"step": 1
|
|
}),
|
|
"sigma": ("FLOAT", {
|
|
"default": 1.0,
|
|
"min": 0.1,
|
|
"max": 10.0,
|
|
"step": 0.1
|
|
}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "blur"
|
|
|
|
CATEGORY = "postprocessing"
|
|
|
|
def gaussian_kernel(self, kernel_size: int, sigma: float):
|
|
x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size), torch.linspace(-1, 1, kernel_size), indexing="ij")
|
|
d = torch.sqrt(x * x + y * y)
|
|
g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
|
|
return g / g.sum()
|
|
|
|
def blur(self, image: torch.Tensor, blur_radius: int, sigma: float):
|
|
if blur_radius == 0:
|
|
return (image,)
|
|
|
|
batch_size, height, width, channels = image.shape
|
|
|
|
kernel_size = blur_radius * 2 + 1
|
|
kernel = self.gaussian_kernel(kernel_size, sigma).repeat(channels, 1, 1).unsqueeze(1)
|
|
|
|
image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
|
|
blurred = F.conv2d(image, kernel, padding=kernel_size // 2, groups=channels)
|
|
blurred = blurred.permute(0, 2, 3, 1)
|
|
|
|
return (blurred,)
|
|
|
|
class Dither:
|
|
def __init__(self):
|
|
pass
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"bits": ("INT", {
|
|
"default": 4,
|
|
"min": 1,
|
|
"max": 8,
|
|
"step": 1
|
|
}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "dither"
|
|
|
|
CATEGORY = "postprocessing"
|
|
|
|
def dither(self, image: torch.Tensor, bits: int):
|
|
batch_size, height, width, _ = image.shape
|
|
result = torch.zeros_like(image)
|
|
|
|
for b in range(batch_size):
|
|
tensor_image = image[b]
|
|
img = (tensor_image * 255)
|
|
height, width, _ = img.shape
|
|
|
|
scale = 255 / (2**bits - 1)
|
|
|
|
for y in range(height):
|
|
for x in range(width):
|
|
old_pixel = img[y, x].clone()
|
|
new_pixel = torch.round(old_pixel / scale) * scale
|
|
img[y, x] = new_pixel
|
|
|
|
quant_error = old_pixel - new_pixel
|
|
|
|
if x + 1 < width:
|
|
img[y, x + 1] += quant_error * 7 / 16
|
|
if y + 1 < height:
|
|
if x - 1 >= 0:
|
|
img[y + 1, x - 1] += quant_error * 3 / 16
|
|
img[y + 1, x] += quant_error * 5 / 16
|
|
if x + 1 < width:
|
|
img[y + 1, x + 1] += quant_error * 1 / 16
|
|
|
|
dithered = img / 255
|
|
tensor = dithered.unsqueeze(0)
|
|
result[b] = tensor
|
|
|
|
return (result,)
|
|
|
|
class Sharpen:
|
|
def __init__(self):
|
|
pass
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"sharpen_radius": ("INT", {
|
|
"default": 1,
|
|
"min": 1,
|
|
"max": 31,
|
|
"step": 1
|
|
}),
|
|
"alpha": ("FLOAT", {
|
|
"default": 1.0,
|
|
"min": 0.1,
|
|
"max": 5.0,
|
|
"step": 0.1
|
|
}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "sharpen"
|
|
|
|
CATEGORY = "postprocessing"
|
|
|
|
def sharpen(self, image: torch.Tensor, sharpen_radius: int, alpha: float):
|
|
if sharpen_radius == 0:
|
|
return (image,)
|
|
|
|
batch_size, height, width, channels = image.shape
|
|
|
|
kernel_size = sharpen_radius * 2 + 1
|
|
kernel = torch.ones((kernel_size, kernel_size), dtype=torch.float32) * -1
|
|
center = kernel_size // 2
|
|
kernel[center, center] = kernel_size**2
|
|
kernel *= alpha
|
|
kernel = kernel.repeat(channels, 1, 1).unsqueeze(1)
|
|
|
|
tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
|
|
sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)
|
|
sharpened = sharpened.permute(0, 2, 3, 1)
|
|
|
|
result = torch.clamp(sharpened, 0, 1)
|
|
|
|
return (result,)
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"Blend": Blend,
|
|
"Blur": Blur,
|
|
"Dither": Dither,
|
|
"Sharpen": Sharpen,
|
|
}
|