1164 lines
45 KiB
Python
1164 lines
45 KiB
Python
import torch
|
|
import contextlib
|
|
import copy
|
|
import inspect
|
|
|
|
from comfy import model_management
|
|
from .ldm.util import instantiate_from_config
|
|
from .ldm.models.autoencoder import AutoencoderKL
|
|
import yaml
|
|
from .cldm import cldm
|
|
from .t2i_adapter import adapter
|
|
|
|
from . import utils
|
|
from . import clip_vision
|
|
from . import gligen
|
|
from . import diffusers_convert
|
|
from . import model_base
|
|
from . import model_detection
|
|
|
|
from . import sd1_clip
|
|
from . import sd2_clip
|
|
from . import sdxl_clip
|
|
|
|
def load_model_weights(model, sd):
|
|
m, u = model.load_state_dict(sd, strict=False)
|
|
m = set(m)
|
|
unexpected_keys = set(u)
|
|
|
|
k = list(sd.keys())
|
|
for x in k:
|
|
if x not in unexpected_keys:
|
|
w = sd.pop(x)
|
|
del w
|
|
if len(m) > 0:
|
|
print("missing", m)
|
|
return model
|
|
|
|
def load_clip_weights(model, sd):
|
|
k = list(sd.keys())
|
|
for x in k:
|
|
if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
|
|
y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
|
|
sd[y] = sd.pop(x)
|
|
|
|
if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
|
|
ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
|
|
if ids.dtype == torch.float32:
|
|
sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
|
|
|
|
sd = utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
|
|
return load_model_weights(model, sd)
|
|
|
|
LORA_CLIP_MAP = {
|
|
"mlp.fc1": "mlp_fc1",
|
|
"mlp.fc2": "mlp_fc2",
|
|
"self_attn.k_proj": "self_attn_k_proj",
|
|
"self_attn.q_proj": "self_attn_q_proj",
|
|
"self_attn.v_proj": "self_attn_v_proj",
|
|
"self_attn.out_proj": "self_attn_out_proj",
|
|
}
|
|
|
|
LORA_UNET_MAP_ATTENTIONS = {
|
|
"proj_in": "proj_in",
|
|
"proj_out": "proj_out",
|
|
}
|
|
|
|
transformer_lora_blocks = {
|
|
"transformer_blocks.{}.attn1.to_q": "transformer_blocks_{}_attn1_to_q",
|
|
"transformer_blocks.{}.attn1.to_k": "transformer_blocks_{}_attn1_to_k",
|
|
"transformer_blocks.{}.attn1.to_v": "transformer_blocks_{}_attn1_to_v",
|
|
"transformer_blocks.{}.attn1.to_out.0": "transformer_blocks_{}_attn1_to_out_0",
|
|
"transformer_blocks.{}.attn2.to_q": "transformer_blocks_{}_attn2_to_q",
|
|
"transformer_blocks.{}.attn2.to_k": "transformer_blocks_{}_attn2_to_k",
|
|
"transformer_blocks.{}.attn2.to_v": "transformer_blocks_{}_attn2_to_v",
|
|
"transformer_blocks.{}.attn2.to_out.0": "transformer_blocks_{}_attn2_to_out_0",
|
|
"transformer_blocks.{}.ff.net.0.proj": "transformer_blocks_{}_ff_net_0_proj",
|
|
"transformer_blocks.{}.ff.net.2": "transformer_blocks_{}_ff_net_2",
|
|
}
|
|
|
|
for i in range(10):
|
|
for k in transformer_lora_blocks:
|
|
LORA_UNET_MAP_ATTENTIONS[k.format(i)] = transformer_lora_blocks[k].format(i)
|
|
|
|
|
|
LORA_UNET_MAP_RESNET = {
|
|
"in_layers.2": "resnets_{}_conv1",
|
|
"emb_layers.1": "resnets_{}_time_emb_proj",
|
|
"out_layers.3": "resnets_{}_conv2",
|
|
"skip_connection": "resnets_{}_conv_shortcut"
|
|
}
|
|
|
|
def load_lora(path, to_load):
|
|
lora = utils.load_torch_file(path, safe_load=True)
|
|
patch_dict = {}
|
|
loaded_keys = set()
|
|
for x in to_load:
|
|
alpha_name = "{}.alpha".format(x)
|
|
alpha = None
|
|
if alpha_name in lora.keys():
|
|
alpha = lora[alpha_name].item()
|
|
loaded_keys.add(alpha_name)
|
|
|
|
A_name = "{}.lora_up.weight".format(x)
|
|
B_name = "{}.lora_down.weight".format(x)
|
|
mid_name = "{}.lora_mid.weight".format(x)
|
|
|
|
if A_name in lora.keys():
|
|
mid = None
|
|
if mid_name in lora.keys():
|
|
mid = lora[mid_name]
|
|
loaded_keys.add(mid_name)
|
|
patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha, mid)
|
|
loaded_keys.add(A_name)
|
|
loaded_keys.add(B_name)
|
|
|
|
|
|
######## loha
|
|
hada_w1_a_name = "{}.hada_w1_a".format(x)
|
|
hada_w1_b_name = "{}.hada_w1_b".format(x)
|
|
hada_w2_a_name = "{}.hada_w2_a".format(x)
|
|
hada_w2_b_name = "{}.hada_w2_b".format(x)
|
|
hada_t1_name = "{}.hada_t1".format(x)
|
|
hada_t2_name = "{}.hada_t2".format(x)
|
|
if hada_w1_a_name in lora.keys():
|
|
hada_t1 = None
|
|
hada_t2 = None
|
|
if hada_t1_name in lora.keys():
|
|
hada_t1 = lora[hada_t1_name]
|
|
hada_t2 = lora[hada_t2_name]
|
|
loaded_keys.add(hada_t1_name)
|
|
loaded_keys.add(hada_t2_name)
|
|
|
|
patch_dict[to_load[x]] = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2)
|
|
loaded_keys.add(hada_w1_a_name)
|
|
loaded_keys.add(hada_w1_b_name)
|
|
loaded_keys.add(hada_w2_a_name)
|
|
loaded_keys.add(hada_w2_b_name)
|
|
|
|
|
|
######## lokr
|
|
lokr_w1_name = "{}.lokr_w1".format(x)
|
|
lokr_w2_name = "{}.lokr_w2".format(x)
|
|
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
|
|
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
|
|
lokr_t2_name = "{}.lokr_t2".format(x)
|
|
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
|
|
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
|
|
|
|
lokr_w1 = None
|
|
if lokr_w1_name in lora.keys():
|
|
lokr_w1 = lora[lokr_w1_name]
|
|
loaded_keys.add(lokr_w1_name)
|
|
|
|
lokr_w2 = None
|
|
if lokr_w2_name in lora.keys():
|
|
lokr_w2 = lora[lokr_w2_name]
|
|
loaded_keys.add(lokr_w2_name)
|
|
|
|
lokr_w1_a = None
|
|
if lokr_w1_a_name in lora.keys():
|
|
lokr_w1_a = lora[lokr_w1_a_name]
|
|
loaded_keys.add(lokr_w1_a_name)
|
|
|
|
lokr_w1_b = None
|
|
if lokr_w1_b_name in lora.keys():
|
|
lokr_w1_b = lora[lokr_w1_b_name]
|
|
loaded_keys.add(lokr_w1_b_name)
|
|
|
|
lokr_w2_a = None
|
|
if lokr_w2_a_name in lora.keys():
|
|
lokr_w2_a = lora[lokr_w2_a_name]
|
|
loaded_keys.add(lokr_w2_a_name)
|
|
|
|
lokr_w2_b = None
|
|
if lokr_w2_b_name in lora.keys():
|
|
lokr_w2_b = lora[lokr_w2_b_name]
|
|
loaded_keys.add(lokr_w2_b_name)
|
|
|
|
lokr_t2 = None
|
|
if lokr_t2_name in lora.keys():
|
|
lokr_t2 = lora[lokr_t2_name]
|
|
loaded_keys.add(lokr_t2_name)
|
|
|
|
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
|
|
patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)
|
|
|
|
for x in lora.keys():
|
|
if x not in loaded_keys:
|
|
print("lora key not loaded", x)
|
|
return patch_dict
|
|
|
|
def model_lora_keys(model, key_map={}):
|
|
sdk = model.state_dict().keys()
|
|
|
|
counter = 0
|
|
for b in range(12):
|
|
tk = "diffusion_model.input_blocks.{}.1".format(b)
|
|
up_counter = 0
|
|
for c in LORA_UNET_MAP_ATTENTIONS:
|
|
k = "{}.{}.weight".format(tk, c)
|
|
if k in sdk:
|
|
lora_key = "lora_unet_down_blocks_{}_attentions_{}_{}".format(counter // 2, counter % 2, LORA_UNET_MAP_ATTENTIONS[c])
|
|
key_map[lora_key] = k
|
|
up_counter += 1
|
|
if up_counter >= 4:
|
|
counter += 1
|
|
for c in LORA_UNET_MAP_ATTENTIONS:
|
|
k = "diffusion_model.middle_block.1.{}.weight".format(c)
|
|
if k in sdk:
|
|
lora_key = "lora_unet_mid_block_attentions_0_{}".format(LORA_UNET_MAP_ATTENTIONS[c])
|
|
key_map[lora_key] = k
|
|
counter = 3
|
|
for b in range(12):
|
|
tk = "diffusion_model.output_blocks.{}.1".format(b)
|
|
up_counter = 0
|
|
for c in LORA_UNET_MAP_ATTENTIONS:
|
|
k = "{}.{}.weight".format(tk, c)
|
|
if k in sdk:
|
|
lora_key = "lora_unet_up_blocks_{}_attentions_{}_{}".format(counter // 3, counter % 3, LORA_UNET_MAP_ATTENTIONS[c])
|
|
key_map[lora_key] = k
|
|
up_counter += 1
|
|
if up_counter >= 4:
|
|
counter += 1
|
|
counter = 0
|
|
text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
|
|
for b in range(24):
|
|
for c in LORA_CLIP_MAP:
|
|
k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
|
if k in sdk:
|
|
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
|
|
key_map[lora_key] = k
|
|
|
|
|
|
#Locon stuff
|
|
ds_counter = 0
|
|
counter = 0
|
|
for b in range(12):
|
|
tk = "diffusion_model.input_blocks.{}.0".format(b)
|
|
key_in = False
|
|
for c in LORA_UNET_MAP_RESNET:
|
|
k = "{}.{}.weight".format(tk, c)
|
|
if k in sdk:
|
|
lora_key = "lora_unet_down_blocks_{}_{}".format(counter // 2, LORA_UNET_MAP_RESNET[c].format(counter % 2))
|
|
key_map[lora_key] = k
|
|
key_in = True
|
|
for bb in range(3):
|
|
k = "{}.{}.op.weight".format(tk[:-2], bb)
|
|
if k in sdk:
|
|
lora_key = "lora_unet_down_blocks_{}_downsamplers_0_conv".format(ds_counter)
|
|
key_map[lora_key] = k
|
|
ds_counter += 1
|
|
if key_in:
|
|
counter += 1
|
|
|
|
counter = 0
|
|
for b in range(3):
|
|
tk = "diffusion_model.middle_block.{}".format(b)
|
|
key_in = False
|
|
for c in LORA_UNET_MAP_RESNET:
|
|
k = "{}.{}.weight".format(tk, c)
|
|
if k in sdk:
|
|
lora_key = "lora_unet_mid_block_{}".format(LORA_UNET_MAP_RESNET[c].format(counter))
|
|
key_map[lora_key] = k
|
|
key_in = True
|
|
if key_in:
|
|
counter += 1
|
|
|
|
counter = 0
|
|
us_counter = 0
|
|
for b in range(12):
|
|
tk = "diffusion_model.output_blocks.{}.0".format(b)
|
|
key_in = False
|
|
for c in LORA_UNET_MAP_RESNET:
|
|
k = "{}.{}.weight".format(tk, c)
|
|
if k in sdk:
|
|
lora_key = "lora_unet_up_blocks_{}_{}".format(counter // 3, LORA_UNET_MAP_RESNET[c].format(counter % 3))
|
|
key_map[lora_key] = k
|
|
key_in = True
|
|
for bb in range(3):
|
|
k = "{}.{}.conv.weight".format(tk[:-2], bb)
|
|
if k in sdk:
|
|
lora_key = "lora_unet_up_blocks_{}_upsamplers_0_conv".format(us_counter)
|
|
key_map[lora_key] = k
|
|
us_counter += 1
|
|
if key_in:
|
|
counter += 1
|
|
|
|
for k in sdk:
|
|
if k.startswith("diffusion_model.") and k.endswith(".weight"):
|
|
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
|
|
key_map["lora_unet_{}".format(key_lora)] = k
|
|
|
|
return key_map
|
|
|
|
|
|
class ModelPatcher:
|
|
def __init__(self, model, size=0):
|
|
self.size = size
|
|
self.model = model
|
|
self.patches = []
|
|
self.backup = {}
|
|
self.model_options = {"transformer_options":{}}
|
|
self.model_size()
|
|
|
|
def model_size(self):
|
|
if self.size > 0:
|
|
return self.size
|
|
model_sd = self.model.state_dict()
|
|
size = 0
|
|
for k in model_sd:
|
|
t = model_sd[k]
|
|
size += t.nelement() * t.element_size()
|
|
self.size = size
|
|
self.model_keys = set(model_sd.keys())
|
|
return size
|
|
|
|
def clone(self):
|
|
n = ModelPatcher(self.model, self.size)
|
|
n.patches = self.patches[:]
|
|
n.model_options = copy.deepcopy(self.model_options)
|
|
n.model_keys = self.model_keys
|
|
return n
|
|
|
|
def set_model_sampler_cfg_function(self, sampler_cfg_function):
|
|
if len(inspect.signature(sampler_cfg_function).parameters) == 3:
|
|
self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
|
|
else:
|
|
self.model_options["sampler_cfg_function"] = sampler_cfg_function
|
|
|
|
def set_model_patch(self, patch, name):
|
|
to = self.model_options["transformer_options"]
|
|
if "patches" not in to:
|
|
to["patches"] = {}
|
|
to["patches"][name] = to["patches"].get(name, []) + [patch]
|
|
|
|
def set_model_patch_replace(self, patch, name, block_name, number):
|
|
to = self.model_options["transformer_options"]
|
|
if "patches_replace" not in to:
|
|
to["patches_replace"] = {}
|
|
if name not in to["patches_replace"]:
|
|
to["patches_replace"][name] = {}
|
|
to["patches_replace"][name][(block_name, number)] = patch
|
|
|
|
def set_model_attn1_patch(self, patch):
|
|
self.set_model_patch(patch, "attn1_patch")
|
|
|
|
def set_model_attn2_patch(self, patch):
|
|
self.set_model_patch(patch, "attn2_patch")
|
|
|
|
def set_model_attn1_replace(self, patch, block_name, number):
|
|
self.set_model_patch_replace(patch, "attn1", block_name, number)
|
|
|
|
def set_model_attn2_replace(self, patch, block_name, number):
|
|
self.set_model_patch_replace(patch, "attn2", block_name, number)
|
|
|
|
def set_model_attn1_output_patch(self, patch):
|
|
self.set_model_patch(patch, "attn1_output_patch")
|
|
|
|
def set_model_attn2_output_patch(self, patch):
|
|
self.set_model_patch(patch, "attn2_output_patch")
|
|
|
|
def model_patches_to(self, device):
|
|
to = self.model_options["transformer_options"]
|
|
if "patches" in to:
|
|
patches = to["patches"]
|
|
for name in patches:
|
|
patch_list = patches[name]
|
|
for i in range(len(patch_list)):
|
|
if hasattr(patch_list[i], "to"):
|
|
patch_list[i] = patch_list[i].to(device)
|
|
if "patches_replace" in to:
|
|
patches = to["patches_replace"]
|
|
for name in patches:
|
|
patch_list = patches[name]
|
|
for k in patch_list:
|
|
if hasattr(patch_list[k], "to"):
|
|
patch_list[k] = patch_list[k].to(device)
|
|
|
|
def model_dtype(self):
|
|
return self.model.get_dtype()
|
|
|
|
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
|
|
p = {}
|
|
for k in patches:
|
|
if k in self.model_keys:
|
|
p[k] = patches[k]
|
|
self.patches += [(strength_patch, p, strength_model)]
|
|
return p.keys()
|
|
|
|
def model_state_dict(self, filter_prefix=None):
|
|
sd = self.model.state_dict()
|
|
keys = list(sd.keys())
|
|
if filter_prefix is not None:
|
|
for k in keys:
|
|
if not k.startswith(filter_prefix):
|
|
sd.pop(k)
|
|
return sd
|
|
|
|
def patch_model(self):
|
|
model_sd = self.model_state_dict()
|
|
for p in self.patches:
|
|
for k in p[1]:
|
|
v = p[1][k]
|
|
key = k
|
|
if key not in model_sd:
|
|
print("could not patch. key doesn't exist in model:", k)
|
|
continue
|
|
|
|
weight = model_sd[key]
|
|
if key not in self.backup:
|
|
self.backup[key] = weight.clone()
|
|
|
|
alpha = p[0]
|
|
strength_model = p[2]
|
|
|
|
if strength_model != 1.0:
|
|
weight *= strength_model
|
|
|
|
if len(v) == 1:
|
|
w1 = v[0]
|
|
if w1.shape != weight.shape:
|
|
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
|
|
else:
|
|
weight += alpha * w1.type(weight.dtype).to(weight.device)
|
|
elif len(v) == 4: #lora/locon
|
|
mat1 = v[0]
|
|
mat2 = v[1]
|
|
if v[2] is not None:
|
|
alpha *= v[2] / mat2.shape[0]
|
|
if v[3] is not None:
|
|
#locon mid weights, hopefully the math is fine because I didn't properly test it
|
|
final_shape = [mat2.shape[1], mat2.shape[0], v[3].shape[2], v[3].shape[3]]
|
|
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1).float(), v[3].transpose(0, 1).flatten(start_dim=1).float()).reshape(final_shape).transpose(0, 1)
|
|
weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device)
|
|
elif len(v) == 8: #lokr
|
|
w1 = v[0]
|
|
w2 = v[1]
|
|
w1_a = v[3]
|
|
w1_b = v[4]
|
|
w2_a = v[5]
|
|
w2_b = v[6]
|
|
t2 = v[7]
|
|
dim = None
|
|
|
|
if w1 is None:
|
|
dim = w1_b.shape[0]
|
|
w1 = torch.mm(w1_a.float(), w1_b.float())
|
|
|
|
if w2 is None:
|
|
dim = w2_b.shape[0]
|
|
if t2 is None:
|
|
w2 = torch.mm(w2_a.float(), w2_b.float())
|
|
else:
|
|
w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2_b.float(), w2_a.float())
|
|
|
|
if len(w2.shape) == 4:
|
|
w1 = w1.unsqueeze(2).unsqueeze(2)
|
|
if v[2] is not None and dim is not None:
|
|
alpha *= v[2] / dim
|
|
|
|
weight += alpha * torch.kron(w1.float(), w2.float()).reshape(weight.shape).type(weight.dtype).to(weight.device)
|
|
else: #loha
|
|
w1a = v[0]
|
|
w1b = v[1]
|
|
if v[2] is not None:
|
|
alpha *= v[2] / w1b.shape[0]
|
|
w2a = v[3]
|
|
w2b = v[4]
|
|
if v[5] is not None: #cp decomposition
|
|
t1 = v[5]
|
|
t2 = v[6]
|
|
m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.float(), w1b.float(), w1a.float())
|
|
m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2b.float(), w2a.float())
|
|
else:
|
|
m1 = torch.mm(w1a.float(), w1b.float())
|
|
m2 = torch.mm(w2a.float(), w2b.float())
|
|
|
|
weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype).to(weight.device)
|
|
return self.model
|
|
def unpatch_model(self):
|
|
model_sd = self.model_state_dict()
|
|
keys = list(self.backup.keys())
|
|
for k in keys:
|
|
model_sd[k][:] = self.backup[k]
|
|
del self.backup[k]
|
|
|
|
self.backup = {}
|
|
|
|
def load_lora_for_models(model, clip, lora_path, strength_model, strength_clip):
|
|
key_map = model_lora_keys(model.model)
|
|
key_map = model_lora_keys(clip.cond_stage_model, key_map)
|
|
loaded = load_lora(lora_path, key_map)
|
|
new_modelpatcher = model.clone()
|
|
k = new_modelpatcher.add_patches(loaded, strength_model)
|
|
new_clip = clip.clone()
|
|
k1 = new_clip.add_patches(loaded, strength_clip)
|
|
k = set(k)
|
|
k1 = set(k1)
|
|
for x in loaded:
|
|
if (x not in k) and (x not in k1):
|
|
print("NOT LOADED", x)
|
|
|
|
return (new_modelpatcher, new_clip)
|
|
|
|
|
|
class CLIP:
|
|
def __init__(self, target=None, embedding_directory=None, no_init=False):
|
|
if no_init:
|
|
return
|
|
params = target.params
|
|
clip = target.clip
|
|
tokenizer = target.tokenizer
|
|
|
|
self.device = model_management.text_encoder_device()
|
|
params["device"] = self.device
|
|
self.cond_stage_model = clip(**(params))
|
|
self.cond_stage_model = self.cond_stage_model.to(self.device)
|
|
|
|
self.tokenizer = tokenizer(embedding_directory=embedding_directory)
|
|
self.patcher = ModelPatcher(self.cond_stage_model)
|
|
self.layer_idx = None
|
|
|
|
def clone(self):
|
|
n = CLIP(no_init=True)
|
|
n.patcher = self.patcher.clone()
|
|
n.cond_stage_model = self.cond_stage_model
|
|
n.tokenizer = self.tokenizer
|
|
n.layer_idx = self.layer_idx
|
|
n.device = self.device
|
|
return n
|
|
|
|
def load_from_state_dict(self, sd):
|
|
self.cond_stage_model.load_sd(sd)
|
|
|
|
def add_patches(self, patches, strength=1.0):
|
|
return self.patcher.add_patches(patches, strength)
|
|
|
|
def clip_layer(self, layer_idx):
|
|
self.layer_idx = layer_idx
|
|
|
|
def tokenize(self, text, return_word_ids=False):
|
|
return self.tokenizer.tokenize_with_weights(text, return_word_ids)
|
|
|
|
def encode_from_tokens(self, tokens, return_pooled=False):
|
|
if self.layer_idx is not None:
|
|
self.cond_stage_model.clip_layer(self.layer_idx)
|
|
try:
|
|
self.patch_model()
|
|
cond, pooled = self.cond_stage_model.encode_token_weights(tokens)
|
|
self.unpatch_model()
|
|
except Exception as e:
|
|
self.unpatch_model()
|
|
raise e
|
|
|
|
cond_out = cond
|
|
if return_pooled:
|
|
return cond_out, pooled
|
|
return cond_out
|
|
|
|
def encode(self, text):
|
|
tokens = self.tokenize(text)
|
|
return self.encode_from_tokens(tokens)
|
|
|
|
def load_sd(self, sd):
|
|
return self.cond_stage_model.load_sd(sd)
|
|
|
|
def get_sd(self):
|
|
return self.cond_stage_model.state_dict()
|
|
|
|
def patch_model(self):
|
|
self.patcher.patch_model()
|
|
|
|
def unpatch_model(self):
|
|
self.patcher.unpatch_model()
|
|
|
|
class VAE:
|
|
def __init__(self, ckpt_path=None, device=None, config=None):
|
|
if config is None:
|
|
#default SD1.x/SD2.x VAE parameters
|
|
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
|
|
self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss")
|
|
else:
|
|
self.first_stage_model = AutoencoderKL(**(config['params']))
|
|
self.first_stage_model = self.first_stage_model.eval()
|
|
if ckpt_path is not None:
|
|
sd = utils.load_torch_file(ckpt_path)
|
|
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
|
|
sd = diffusers_convert.convert_vae_state_dict(sd)
|
|
self.first_stage_model.load_state_dict(sd, strict=False)
|
|
|
|
if device is None:
|
|
device = model_management.get_torch_device()
|
|
self.device = device
|
|
|
|
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
|
|
steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
|
|
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
|
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
|
pbar = utils.ProgressBar(steps)
|
|
|
|
decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.device)) + 1.0)
|
|
output = torch.clamp((
|
|
(utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
|
|
utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
|
|
utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
|
|
/ 3.0) / 2.0, min=0.0, max=1.0)
|
|
return output
|
|
|
|
def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
|
|
steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
|
|
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
|
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
|
pbar = utils.ProgressBar(steps)
|
|
|
|
encode_fn = lambda a: self.first_stage_model.encode(2. * a.to(self.device) - 1.).sample()
|
|
samples = utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
|
samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
|
samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
|
samples /= 3.0
|
|
return samples
|
|
|
|
def decode(self, samples_in):
|
|
model_management.unload_model()
|
|
self.first_stage_model = self.first_stage_model.to(self.device)
|
|
try:
|
|
free_memory = model_management.get_free_memory(self.device)
|
|
batch_number = int((free_memory * 0.7) / (2562 * samples_in.shape[2] * samples_in.shape[3] * 64))
|
|
batch_number = max(1, batch_number)
|
|
|
|
pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu")
|
|
for x in range(0, samples_in.shape[0], batch_number):
|
|
samples = samples_in[x:x+batch_number].to(self.device)
|
|
pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples) + 1.0) / 2.0, min=0.0, max=1.0).cpu()
|
|
except model_management.OOM_EXCEPTION as e:
|
|
print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
|
|
pixel_samples = self.decode_tiled_(samples_in)
|
|
|
|
self.first_stage_model = self.first_stage_model.cpu()
|
|
pixel_samples = pixel_samples.cpu().movedim(1,-1)
|
|
return pixel_samples
|
|
|
|
def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
|
|
model_management.unload_model()
|
|
self.first_stage_model = self.first_stage_model.to(self.device)
|
|
output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
|
|
self.first_stage_model = self.first_stage_model.cpu()
|
|
return output.movedim(1,-1)
|
|
|
|
def encode(self, pixel_samples):
|
|
model_management.unload_model()
|
|
self.first_stage_model = self.first_stage_model.to(self.device)
|
|
pixel_samples = pixel_samples.movedim(-1,1)
|
|
try:
|
|
free_memory = model_management.get_free_memory(self.device)
|
|
batch_number = int((free_memory * 0.7) / (2078 * pixel_samples.shape[2] * pixel_samples.shape[3])) #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change.
|
|
batch_number = max(1, batch_number)
|
|
samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device="cpu")
|
|
for x in range(0, pixel_samples.shape[0], batch_number):
|
|
pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.device)
|
|
samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).sample().cpu()
|
|
|
|
except model_management.OOM_EXCEPTION as e:
|
|
print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
|
|
samples = self.encode_tiled_(pixel_samples)
|
|
|
|
self.first_stage_model = self.first_stage_model.cpu()
|
|
return samples
|
|
|
|
def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
|
|
model_management.unload_model()
|
|
self.first_stage_model = self.first_stage_model.to(self.device)
|
|
pixel_samples = pixel_samples.movedim(-1,1)
|
|
samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
|
|
self.first_stage_model = self.first_stage_model.cpu()
|
|
return samples
|
|
|
|
def get_sd(self):
|
|
return self.first_stage_model.state_dict()
|
|
|
|
|
|
def broadcast_image_to(tensor, target_batch_size, batched_number):
|
|
current_batch_size = tensor.shape[0]
|
|
#print(current_batch_size, target_batch_size)
|
|
if current_batch_size == 1:
|
|
return tensor
|
|
|
|
per_batch = target_batch_size // batched_number
|
|
tensor = tensor[:per_batch]
|
|
|
|
if per_batch > tensor.shape[0]:
|
|
tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)
|
|
|
|
current_batch_size = tensor.shape[0]
|
|
if current_batch_size == target_batch_size:
|
|
return tensor
|
|
else:
|
|
return torch.cat([tensor] * batched_number, dim=0)
|
|
|
|
class ControlNet:
|
|
def __init__(self, control_model, global_average_pooling=False, device=None):
|
|
self.control_model = control_model
|
|
self.cond_hint_original = None
|
|
self.cond_hint = None
|
|
self.strength = 1.0
|
|
if device is None:
|
|
device = model_management.get_torch_device()
|
|
self.device = device
|
|
self.previous_controlnet = None
|
|
self.global_average_pooling = global_average_pooling
|
|
|
|
def get_control(self, x_noisy, t, cond, batched_number):
|
|
control_prev = None
|
|
if self.previous_controlnet is not None:
|
|
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
|
|
|
output_dtype = x_noisy.dtype
|
|
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
|
|
if self.cond_hint is not None:
|
|
del self.cond_hint
|
|
self.cond_hint = None
|
|
self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
|
|
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
|
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
|
|
|
if self.control_model.dtype == torch.float16:
|
|
precision_scope = torch.autocast
|
|
else:
|
|
precision_scope = contextlib.nullcontext
|
|
|
|
with precision_scope(model_management.get_autocast_device(self.device)):
|
|
self.control_model = model_management.load_if_low_vram(self.control_model)
|
|
context = torch.cat(cond['c_crossattn'], 1)
|
|
y = cond.get('c_adm', None)
|
|
control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=context, y=y)
|
|
self.control_model = model_management.unload_if_low_vram(self.control_model)
|
|
out = {'middle':[], 'output': []}
|
|
autocast_enabled = torch.is_autocast_enabled()
|
|
|
|
for i in range(len(control)):
|
|
if i == (len(control) - 1):
|
|
key = 'middle'
|
|
index = 0
|
|
else:
|
|
key = 'output'
|
|
index = i
|
|
x = control[i]
|
|
if self.global_average_pooling:
|
|
x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
|
|
|
|
x *= self.strength
|
|
if x.dtype != output_dtype and not autocast_enabled:
|
|
x = x.to(output_dtype)
|
|
|
|
if control_prev is not None and key in control_prev:
|
|
prev = control_prev[key][index]
|
|
if prev is not None:
|
|
x += prev
|
|
out[key].append(x)
|
|
if control_prev is not None and 'input' in control_prev:
|
|
out['input'] = control_prev['input']
|
|
return out
|
|
|
|
def set_cond_hint(self, cond_hint, strength=1.0):
|
|
self.cond_hint_original = cond_hint
|
|
self.strength = strength
|
|
return self
|
|
|
|
def set_previous_controlnet(self, controlnet):
|
|
self.previous_controlnet = controlnet
|
|
return self
|
|
|
|
def cleanup(self):
|
|
if self.previous_controlnet is not None:
|
|
self.previous_controlnet.cleanup()
|
|
if self.cond_hint is not None:
|
|
del self.cond_hint
|
|
self.cond_hint = None
|
|
|
|
def copy(self):
|
|
c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling)
|
|
c.cond_hint_original = self.cond_hint_original
|
|
c.strength = self.strength
|
|
return c
|
|
|
|
def get_models(self):
|
|
out = []
|
|
if self.previous_controlnet is not None:
|
|
out += self.previous_controlnet.get_models()
|
|
out.append(self.control_model)
|
|
return out
|
|
|
|
def load_controlnet(ckpt_path, model=None):
|
|
controlnet_data = utils.load_torch_file(ckpt_path, safe_load=True)
|
|
pth_key = 'control_model.zero_convs.0.0.weight'
|
|
pth = False
|
|
key = 'zero_convs.0.0.weight'
|
|
if pth_key in controlnet_data:
|
|
pth = True
|
|
key = pth_key
|
|
prefix = "control_model."
|
|
elif key in controlnet_data:
|
|
prefix = ""
|
|
else:
|
|
net = load_t2i_adapter(controlnet_data)
|
|
if net is None:
|
|
print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
|
|
return net
|
|
|
|
use_fp16 = model_management.should_use_fp16()
|
|
|
|
controlnet_config = model_detection.model_config_from_unet(controlnet_data, prefix, use_fp16).unet_config
|
|
controlnet_config.pop("out_channels")
|
|
controlnet_config["hint_channels"] = 3
|
|
control_model = cldm.ControlNet(**controlnet_config)
|
|
|
|
if pth:
|
|
if 'difference' in controlnet_data:
|
|
if model is not None:
|
|
m = model.patch_model()
|
|
model_sd = m.state_dict()
|
|
for x in controlnet_data:
|
|
c_m = "control_model."
|
|
if x.startswith(c_m):
|
|
sd_key = "diffusion_model.{}".format(x[len(c_m):])
|
|
if sd_key in model_sd:
|
|
cd = controlnet_data[x]
|
|
cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
|
|
model.unpatch_model()
|
|
else:
|
|
print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
|
|
|
|
class WeightsLoader(torch.nn.Module):
|
|
pass
|
|
w = WeightsLoader()
|
|
w.control_model = control_model
|
|
missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
|
|
else:
|
|
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
|
|
print(missing, unexpected)
|
|
|
|
if use_fp16:
|
|
control_model = control_model.half()
|
|
|
|
global_average_pooling = False
|
|
if ckpt_path.endswith("_shuffle.pth") or ckpt_path.endswith("_shuffle.safetensors") or ckpt_path.endswith("_shuffle_fp16.safetensors"): #TODO: smarter way of enabling global_average_pooling
|
|
global_average_pooling = True
|
|
|
|
control = ControlNet(control_model, global_average_pooling=global_average_pooling)
|
|
return control
|
|
|
|
class T2IAdapter:
|
|
def __init__(self, t2i_model, channels_in, device=None):
|
|
self.t2i_model = t2i_model
|
|
self.channels_in = channels_in
|
|
self.strength = 1.0
|
|
if device is None:
|
|
device = model_management.get_torch_device()
|
|
self.device = device
|
|
self.previous_controlnet = None
|
|
self.control_input = None
|
|
self.cond_hint_original = None
|
|
self.cond_hint = None
|
|
|
|
def get_control(self, x_noisy, t, cond, batched_number):
|
|
control_prev = None
|
|
if self.previous_controlnet is not None:
|
|
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
|
|
|
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
|
|
if self.cond_hint is not None:
|
|
del self.cond_hint
|
|
self.control_input = None
|
|
self.cond_hint = None
|
|
self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").float().to(self.device)
|
|
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
|
|
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
|
|
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
|
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
|
if self.control_input is None:
|
|
self.t2i_model.to(self.device)
|
|
self.control_input = self.t2i_model(self.cond_hint)
|
|
self.t2i_model.cpu()
|
|
|
|
output_dtype = x_noisy.dtype
|
|
out = {'input':[]}
|
|
|
|
autocast_enabled = torch.is_autocast_enabled()
|
|
for i in range(len(self.control_input)):
|
|
key = 'input'
|
|
x = self.control_input[i] * self.strength
|
|
if x.dtype != output_dtype and not autocast_enabled:
|
|
x = x.to(output_dtype)
|
|
|
|
if control_prev is not None and key in control_prev:
|
|
index = len(control_prev[key]) - i * 3 - 3
|
|
prev = control_prev[key][index]
|
|
if prev is not None:
|
|
x += prev
|
|
out[key].insert(0, None)
|
|
out[key].insert(0, None)
|
|
out[key].insert(0, x)
|
|
|
|
if control_prev is not None and 'input' in control_prev:
|
|
for i in range(len(out['input'])):
|
|
if out['input'][i] is None:
|
|
out['input'][i] = control_prev['input'][i]
|
|
if control_prev is not None and 'middle' in control_prev:
|
|
out['middle'] = control_prev['middle']
|
|
if control_prev is not None and 'output' in control_prev:
|
|
out['output'] = control_prev['output']
|
|
return out
|
|
|
|
def set_cond_hint(self, cond_hint, strength=1.0):
|
|
self.cond_hint_original = cond_hint
|
|
self.strength = strength
|
|
return self
|
|
|
|
def set_previous_controlnet(self, controlnet):
|
|
self.previous_controlnet = controlnet
|
|
return self
|
|
|
|
def copy(self):
|
|
c = T2IAdapter(self.t2i_model, self.channels_in)
|
|
c.cond_hint_original = self.cond_hint_original
|
|
c.strength = self.strength
|
|
return c
|
|
|
|
def cleanup(self):
|
|
if self.previous_controlnet is not None:
|
|
self.previous_controlnet.cleanup()
|
|
if self.cond_hint is not None:
|
|
del self.cond_hint
|
|
self.cond_hint = None
|
|
|
|
def get_models(self):
|
|
out = []
|
|
if self.previous_controlnet is not None:
|
|
out += self.previous_controlnet.get_models()
|
|
return out
|
|
|
|
def load_t2i_adapter(t2i_data):
|
|
keys = t2i_data.keys()
|
|
if 'adapter' in keys:
|
|
t2i_data = t2i_data['adapter']
|
|
keys = t2i_data.keys()
|
|
if "body.0.in_conv.weight" in keys:
|
|
cin = t2i_data['body.0.in_conv.weight'].shape[1]
|
|
model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
|
|
elif 'conv_in.weight' in keys:
|
|
cin = t2i_data['conv_in.weight'].shape[1]
|
|
channel = t2i_data['conv_in.weight'].shape[0]
|
|
ksize = t2i_data['body.0.block2.weight'].shape[2]
|
|
use_conv = False
|
|
down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
|
|
if len(down_opts) > 0:
|
|
use_conv = True
|
|
model_ad = adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv)
|
|
else:
|
|
return None
|
|
model_ad.load_state_dict(t2i_data)
|
|
return T2IAdapter(model_ad, cin // 64)
|
|
|
|
|
|
class StyleModel:
|
|
def __init__(self, model, device="cpu"):
|
|
self.model = model
|
|
|
|
def get_cond(self, input):
|
|
return self.model(input.last_hidden_state)
|
|
|
|
|
|
def load_style_model(ckpt_path):
|
|
model_data = utils.load_torch_file(ckpt_path, safe_load=True)
|
|
keys = model_data.keys()
|
|
if "style_embedding" in keys:
|
|
model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
|
|
else:
|
|
raise Exception("invalid style model {}".format(ckpt_path))
|
|
model.load_state_dict(model_data)
|
|
return StyleModel(model)
|
|
|
|
|
|
def load_clip(ckpt_paths, embedding_directory=None):
|
|
clip_data = []
|
|
for p in ckpt_paths:
|
|
clip_data.append(utils.load_torch_file(p, safe_load=True))
|
|
|
|
class EmptyClass:
|
|
pass
|
|
|
|
for i in range(len(clip_data)):
|
|
if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
|
|
clip_data[i] = utils.transformers_convert(clip_data[i], "", "text_model.", 32)
|
|
|
|
clip_target = EmptyClass()
|
|
clip_target.params = {}
|
|
if len(clip_data) == 1:
|
|
if "text_model.encoder.layers.30.mlp.fc1.weight" in clip_data[0]:
|
|
clip_target.clip = sdxl_clip.SDXLRefinerClipModel
|
|
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
|
elif "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data[0]:
|
|
clip_target.clip = sd2_clip.SD2ClipModel
|
|
clip_target.tokenizer = sd2_clip.SD2Tokenizer
|
|
else:
|
|
clip_target.clip = sd1_clip.SD1ClipModel
|
|
clip_target.tokenizer = sd1_clip.SD1Tokenizer
|
|
else:
|
|
clip_target.clip = sdxl_clip.SDXLClipModel
|
|
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
|
|
|
clip = CLIP(clip_target, embedding_directory=embedding_directory)
|
|
for c in clip_data:
|
|
m, u = clip.load_sd(c)
|
|
if len(m) > 0:
|
|
print("clip missing:", m)
|
|
|
|
if len(u) > 0:
|
|
print("clip unexpected:", u)
|
|
return clip
|
|
|
|
def load_gligen(ckpt_path):
|
|
data = utils.load_torch_file(ckpt_path, safe_load=True)
|
|
model = gligen.load_gligen(data)
|
|
if model_management.should_use_fp16():
|
|
model = model.half()
|
|
return model
|
|
|
|
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
|
|
#TODO: this function is a mess and should be removed eventually
|
|
if config is None:
|
|
with open(config_path, 'r') as stream:
|
|
config = yaml.safe_load(stream)
|
|
model_config_params = config['model']['params']
|
|
clip_config = model_config_params['cond_stage_config']
|
|
scale_factor = model_config_params['scale_factor']
|
|
vae_config = model_config_params['first_stage_config']
|
|
|
|
fp16 = False
|
|
if "unet_config" in model_config_params:
|
|
if "params" in model_config_params["unet_config"]:
|
|
unet_config = model_config_params["unet_config"]["params"]
|
|
if "use_fp16" in unet_config:
|
|
fp16 = unet_config["use_fp16"]
|
|
|
|
noise_aug_config = None
|
|
if "noise_aug_config" in model_config_params:
|
|
noise_aug_config = model_config_params["noise_aug_config"]
|
|
|
|
v_prediction = False
|
|
|
|
if "parameterization" in model_config_params:
|
|
if model_config_params["parameterization"] == "v":
|
|
v_prediction = True
|
|
|
|
clip = None
|
|
vae = None
|
|
|
|
class WeightsLoader(torch.nn.Module):
|
|
pass
|
|
|
|
if state_dict is None:
|
|
state_dict = utils.load_torch_file(ckpt_path)
|
|
|
|
class EmptyClass:
|
|
pass
|
|
|
|
model_config = EmptyClass()
|
|
model_config.unet_config = unet_config
|
|
from . import latent_formats
|
|
model_config.latent_format = latent_formats.SD15(scale_factor=scale_factor)
|
|
|
|
if config['model']["target"].endswith("LatentInpaintDiffusion"):
|
|
model = model_base.SDInpaint(model_config, v_prediction=v_prediction)
|
|
elif config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"):
|
|
model = model_base.SD21UNCLIP(model_config, noise_aug_config["params"], v_prediction=v_prediction)
|
|
else:
|
|
model = model_base.BaseModel(model_config, v_prediction=v_prediction)
|
|
|
|
if fp16:
|
|
model = model.half()
|
|
|
|
model.load_model_weights(state_dict, "model.diffusion_model.")
|
|
|
|
if output_vae:
|
|
w = WeightsLoader()
|
|
vae = VAE(config=vae_config)
|
|
w.first_stage_model = vae.first_stage_model
|
|
load_model_weights(w, state_dict)
|
|
|
|
if output_clip:
|
|
w = WeightsLoader()
|
|
clip_target = EmptyClass()
|
|
clip_target.params = clip_config.get("params", {})
|
|
if clip_config["target"].endswith("FrozenOpenCLIPEmbedder"):
|
|
clip_target.clip = sd2_clip.SD2ClipModel
|
|
clip_target.tokenizer = sd2_clip.SD2Tokenizer
|
|
elif clip_config["target"].endswith("FrozenCLIPEmbedder"):
|
|
clip_target.clip = sd1_clip.SD1ClipModel
|
|
clip_target.tokenizer = sd1_clip.SD1Tokenizer
|
|
clip = CLIP(clip_target, embedding_directory=embedding_directory)
|
|
w.cond_stage_model = clip.cond_stage_model
|
|
load_clip_weights(w, state_dict)
|
|
|
|
return (ModelPatcher(model), clip, vae)
|
|
|
|
|
|
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None):
|
|
sd = utils.load_torch_file(ckpt_path)
|
|
sd_keys = sd.keys()
|
|
clip = None
|
|
clipvision = None
|
|
vae = None
|
|
model = None
|
|
clip_target = None
|
|
|
|
fp16 = model_management.should_use_fp16()
|
|
|
|
class WeightsLoader(torch.nn.Module):
|
|
pass
|
|
|
|
model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", fp16)
|
|
if model_config is None:
|
|
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
|
|
|
|
if model_config.clip_vision_prefix is not None:
|
|
if output_clipvision:
|
|
clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
|
|
|
|
model = model_config.get_model(sd)
|
|
model.load_model_weights(sd, "model.diffusion_model.")
|
|
|
|
if output_vae:
|
|
vae = VAE()
|
|
w = WeightsLoader()
|
|
w.first_stage_model = vae.first_stage_model
|
|
load_model_weights(w, sd)
|
|
|
|
if output_clip:
|
|
w = WeightsLoader()
|
|
clip_target = model_config.clip_target()
|
|
clip = CLIP(clip_target, embedding_directory=embedding_directory)
|
|
w.cond_stage_model = clip.cond_stage_model
|
|
sd = model_config.process_clip_state_dict(sd)
|
|
load_model_weights(w, sd)
|
|
|
|
left_over = sd.keys()
|
|
if len(left_over) > 0:
|
|
print("left over keys:", left_over)
|
|
|
|
return (ModelPatcher(model), clip, vae, clipvision)
|
|
|
|
def save_checkpoint(output_path, model, clip, vae, metadata=None):
|
|
try:
|
|
model.patch_model()
|
|
clip.patch_model()
|
|
sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd())
|
|
utils.save_torch_file(sd, output_path, metadata=metadata)
|
|
model.unpatch_model()
|
|
clip.unpatch_model()
|
|
except Exception as e:
|
|
model.unpatch_model()
|
|
clip.unpatch_model()
|
|
raise e
|